乘法分配律教学反思

时间:2024-05-15 17:47:53 教学反思 我要投稿

乘法分配律教学反思

  作为一名到岗不久的老师,教学是我们的工作之一,教学的心得体会可以总结在教学反思中,那么什么样的教学反思才是好的呢?下面是小编精心整理的乘法分配律教学反思,希望能够帮助到大家。

乘法分配律教学反思

乘法分配律教学反思1

  《乘法分配律》是整个四年级运算定律中最最重要的一节。理解乘法分配律、并会很好运用他很重要!所以这节课重点就是在于让学生理解乘法分配律的意义。

  整堂课基本完成了教学目标,但在环节设置以及细节等方面存在很多问题。

  1、概念课亲历过程需精确、严密

  本节课是一节概念课,旨在学生通过操作整理式子(多余3)——观察式子——猜测观点——验证观点——总结定理,这样一个过程。如果后面没有反例,就证明存在这种成立的可能。而在整节课程中,学生没有明确的用具体数字验证它是成立的,所以推导出来的不具有说服力。可能会给学生一种不好的印象,猜想后就可以了,不需要验证、或者不需要反证来验证就可以了。所以概念怎么推到出来这个很重要。

  2、师生互动评判加强

  学生无论是回答好的还是不好的,对的还是不对的,都需要老师带有评判性的'语言,这样对于学生的积极性都可以提高。同样的对于典型的问题可以进行当堂解答,这都是课堂生成的一个过程,需要重视学生在整个课程的反映这个很重要。

  3、语言表达方面可以优化

  在思维拓展的时候,本来应该是“如果给你一把剪刀,你可以拼吗?用最少的次数去剪,使它拼成一个长方形,你会剪吗?拼有什么要求吗?如果没有相等的两条边,你可以创造吗?”而在课堂上,表达的意思却是:“如果给你一把剪刀,你可以拼吗?拼有什么要求,如果没有,你可以创造吗?”结果导致最终在小组活动中,学生随意乱剪,并不理解活动的意义。数学讲究的是严密性以及逻辑性,所以要求要明确一些,引导性的语言要贴切。整个语言组织,如:相等的两条表而不是相同的两条边

  4、注重细节

  在整个过程中有同学列出38×(547-347)和(547-347)×38这两个算式,它都可以用乘法分配律来讲,但同时两者也是有差异的。课堂生成的东西需要注意,并且坐好预设。将38放到前面,可以避免出错。这个小的知识点也是需要去让学生通过对比来理解的这很重要。方便他们积累避免错误。

  5、试教是一个课堂诊断的过程

  在上整堂课前,已经去试教过3个班。虽然每个班情况都不一样,但是试教就是跟孩子的磨合过程,试教过程中发现什么问题,再去改正过来,调整好。如果每个班都出现这样的问题,说明课程设置不合理。需要对教案进行修改。这也是为什么需要试教。希望在试教过程中,能够反思,自己发现问题所在。

  总的来说,这个课从制作教案、试教、修改、正式教学过程中,感谢数学组尤其是师傅对我的指点以及磨炼。试教让我明白了课件调整的重要性,一定要符合学生的认知发展规律。让我明白了数学语言是需要逻辑性,针对性以及严密性的。所以未来的路还很长,我还会再修改磨炼的。要相信好课是不断磨出来的!

乘法分配律教学反思2

  1、乘法分配律既要注重它的外形结构特点,更要注重其内涵。

  乘法分配率的结构特点,即两数的和乘一个数(先加后乘)=两个积的和(先乘后加),使学生从表象上进行初步感知。从而理解(4+2)×25=4×25+2×25是相等的,即左边表示6个25,右边也表示6个25,所以(4+2)×25=4×25+2×25。

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的.和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

  3、让学生进行一题多解的练习,加深学生对乘法结合律与乘法分配律的理解。

  如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行计算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。

乘法分配律教学反思3

  新课标强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。

  乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律。因此在教学中我设计了一些学生熟悉的问题,让学生在不断的感悟、体验中理解乘法分配律,从而概括出乘法分配律。

  1、分组比赛,激发学习兴趣。

  为了激发学生的学习兴趣,调动学生探究的积极性,首先设计两道题(4+2)×25 4×25+2×25,把学生分成两组进行比赛。通过比赛让学生发现这两道题结果是相等的,它们可以用一个等号连接起来,但第二题做起来比较快而且比较简单。可他们之间有什么联系和规律不急着让学生进行探究而把悬念留着,让学生通过下一环节来发现。

  2.分组讨论,发现规律。

  在学习完例题后,让学生分组讨论比较8×6+2×6(8+2)×6 27×46+73×46(27+73)×46每组两道算式,发现蕴藏在题目中的.规律。

  3、判断、辨析,加深理解。

  在学生通过发现问题、举例验证、建立模型、总结规律后,为了加深学生对乘法分配律的理解,我针对平时学生练习中的错误,搜集了一些具有代表性的错例,如10×5+5×11和10×(5+11),(5×6)×2和5×2+6×2,(13+9)×4和13×4+9等式子,让学生进行判断、辨析,并说出错误的原因然后改正。这样通过辨析让学生对于乘法分配律的理解更清晰,更到位。

乘法分配律教学反思4

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律,是一节比较抽象的概念课。我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。

  具体设计:先创设兔子吃萝卜的情景,调动学生的学习积极性。

  通过买“老伯伯养了10只猴子,每只兔子早上吃4个萝卜,晚上要吃3只萝卜这些猴子一天共要吃掉多少个萝卜?”列出两种不同的式子,让学生通过观察两种不同的计算方法也得到了相同的结果,这两个算式也可用“=”连接。

  然后让学生观察这两个等式的特点,仿造上面的等式填空。

  (4+5)×25=(14+25)×5=(37+125)×8=。

  再让学生观察这几组算式,等号左边的算式有什么相同点?等号右边的算式有什么相同点?等号左边算式中的两个加数与右边算式中的什么数有关系?左边算式中的一个因数与右边算式中的哪个数有关系?使之让学生从中感受了乘法分配律的模型。

  从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:(a+b)×c=a×c+b×c,他们确实能够体会到两个不同的算式具有相等的关系。

  第一步:通过资料获取继续研究的信息。

  虽然所得的信息很简单,只是几组具有相等关系的算式,但这是学生通过活动自己获取的,学生对于它们感到熟悉和亲切,用他们作为继续研究的'对象,能够调动学生的参与意识。

  第二步:观察算式,寻找规律。让学生通过讨论初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,我不急于告诉学生答案,而是让学生自己通过举例加以验证。这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。

  第三步:应用规律,解决实际问题。通过对于实际问题的解决,进一步拓宽乘法分配律。这一阶段,既是学生巩固和扩大知识,又是吸收内化知识的阶段,同时还是开发学生创新思维的重要阶段。

  本节课的可取之处:

  1、为学生提供了充分的数学活动机会,把学生的活动定位在感悟和体验上,引导学生用数学思维方式去发现、去探索。

  2、使学生在辨析与争论中,自然而然地完成猜测与验证,形成清晰的认识,在学生举例中使学生感到乘法分配律的一个重要因素,最后由特殊到一般总结字母公式。

  3、将模仿式的学习变为探究式的学习。

  4、在本课的练习设计上,能力求有针对性,有坡度,同时也注意知识的延伸。

  本节课的不足之处:

  1、习题在安排上在充分理解《乘法分配律》的基础上,可以再安排一些具有思考性的题目,如78×99+78=78×(99+1),为后面的简便运算作伏笔,这样教学效果会更好。

  2、在数学术语上还得反复推敲,以达到准确无误。

  3、本堂课中新的教学理念有所体现,但在具体的操作中还缺乏成熟的思考,对学生的积极性没有充分调动起来。

  我会坚持不断学习理论知识,多听课多向前辈们请教,切实提高业务能力。

乘法分配律教学反思5

  教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,在教学中应该注意些什么呢?

  1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

  教学中通过解决“一共贴了多少块瓷砖?”这一问题,结合具体的生活情景,得到了(6+4)×9=6×9+4×9这一结果。这时老师往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解(6+4)×9=6×9+4×9是相等的,还要从乘法的意义的'角度理解,即左边表示10个9,右边也表示10个9,所以(6+4)×9=6×9+4×9。

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

  3、 让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

  如:计算125×88;101×89你能用几种方法? 125×88 ①竖式计算; ②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88; ⑥(100+20+5)×88等等。101×89 ①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。

  4、多练。

  针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

乘法分配律教学反思6

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是所有运算定律中变化最多的,因此它是学生最难理解与运用的定律。因此我在教学中让学生在不断的感悟、体验中理解乘法分配律,从而概括出乘法分配律。

  一、在对本课的教学目标上,我定位在:

  (1)从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

  (2)渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

  二、在本课教学过程的设计上

  我尽量想体现新课标的一些理念,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。顺延之前学习乘法交换律和乘法结合律的情境举例:利用植树活动情境“一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇水”。提出问题:“一共有多少名同学参加了这次植树活动”。让学生尝试通过不同的方法得出:

  (4 + 2)×254×25 + 2×25

  = 6×25 = 100 + 50

  = 150(元)= 150(元)

  此时,让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接。使之让学生从中感受了乘法分配律的模型。从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:

  (a + b)× c = a × c + b × c

  三、在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。

  1、在完成课本36页做一做时,对应这3道判断题,

  (1)、判断56×(19+28)=56×19+28,让学生感知到乘法分配律要分给括号里的每一个数,强调乘法分配律的“公平性”。

  (2)、判断32×(7×3)=32×7+32×3,让学生注意到乘法结合律和乘法分配律的区别:通过对运算定律意义的描述,和算式的`特点,提炼出最简洁的区分方法:乘法结合律是连乘情况下的,乘法分配律除了乘法还有加法(后继教学还会出现减法),容易使我们混淆的原因是,它们都是乘法的运算定律都有乘法出现,更关键是它们都出现了小括号。

  (3)、判断64×64+36×64,借助64个64和36个64,一共是64+36=100个64,让学生理解乘法分配律逆向使用,在一些情况下,计算会变得十分简便。

  2、在完成较简单的课本36页做一做后,进行一些扩展型的练习:

  通过(250—25)×4,让学生感受到,乘法分配律除也可以两个数的差与一个数相乘。对于分配之后,再把两个积相减。同时复习强调我们熟悉的5道重要算式:5×2、25×4、125×8、125×4、25×8

  由于本节课的知识运用的难度较大,学生对乘法分配律可以基本掌握,但是对于其万般变化,还是有点力不从心,而该运算定律对学生后继学习,尤其是小数和分数计算时有一定影响,所以还需要学生在本节课后进行深入的学习,教师也需要针对乘法分配律的每一种题型,结合学生的掌握情况进行更系统深入的讲解。

乘法分配律教学反思7

  计算教学是小学数学教学中的重要组成部分,几乎每一册的教材中都有计算的教学,而其中的“简便计算”教学更是计算教学的一部“重头戏”。学好简便运算,不仅能降低计算的难度,而且能提高计算的正确率和速度,更重要的是,能使学生将学到的定理、定律、法则、性质等运算规律融会贯通,达到学以致用的目的,从而能培养学生良好的计算习惯。

  乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。所以,对于乘法分配律的教学,我没有把重点放在规律的数学语言表达上,而是注重引导学生积极主动的参与感悟、体验、发现数学规律的过程,并且学会用辩证的思维方式思考问题,培养良好的思维习惯,真正落实学生的主体地位。

  在教学中,我主要做到了以下几点:

  1、关注学生已有的知识经验。

  兴趣是形成良好学习习惯的催化剂。以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境,也就是根据例题图,提出问题:买5件夹克衫和5条裤子,一共要付多少元?通过两种算式的比较,唤醒了学生已有的知识经验,并有意识的蕴含新知识的教学,激发了学生的学习兴趣。

  2、引导学生积极主动探究。

  配养学生主动探究的学习习惯,是数学老师在数学课上的重要任务。先让学生根据提供的问题,用不同的方法解决,从而发现(65+45)×5=65×5+45×5这个等式,让学生观察,初步感知“乘法分配律”。再展开类比:假如我们要选择另外两种服装,买的数量都相同,一共要付多少元?你还能用两种方法来求一共要付的钱吗?让学生在再次解决问题的过程中进一步感受乘法分配律的存在。然后我引导学生观察,初步发现规律,再引导学生举例验证自己的发现,得到更多的等式,继续引导学生观察,直到发现规律,同时质疑是否有反例,再一致确定规律的存在,并得出字母公式。

  对于乘法分配律的教学,我把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。让学生在课堂上经历了数学研究的基本过程:即感知——猜想——验证——总结——应用的过程,学生不仅自主发现了乘法分配律,掌握了乘法分配律的相关知识,而且掌握了科学探究的方法,数学思维的能力也得到了发展。

  3、注重合作与交流,多向互动。

  学生在学习数学知识的过程中能学会与人合作交流,这也是一种良好的学习习惯,而倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。因此,为了让不同的学生在数学学习中都得到发展,我在本课教学中立足通过生生、师生之间多向互动,特别是通过学生之间的互相启发与补充来培养他们的合作意识,实现对“乘法分配律”的主动建构。学生在这样一个开放的环境中博采众长,共同经历猜想、验证、归纳知识的'形成过程,共同体验成功的快乐。既培养了学生的问题意识,又拓宽了学生思维,增强思维的条理性,学生也学得积极主动。

  4、练习设计关注学生思维能力的发展。

  在练习题型的设计上,我基本尊重课本上知识的体系,在第4个练习中,三组题目的对比练习主要是巩固学生对乘法分配律的理解,让学生通过对比体会计算的简便。而在计算的过程中会选择更合理的方法进行计算,这有助于帮助学生提高计算的正确性,有利于学生养成良好的计算习惯。我在设计教学时,先出示一组题,在学生发现它们之间的联系后,有意让女生做简便的一题,让学生初步感知女生做的题比较简便,然后再出示第二组,还是有意让女生做简便的一题,所以还是女生优先,至此我引导学生发现:有时先加再乘比较简便,有时先乘再加比较简便,可以根据实际情况的不同,作出合理的选择,甚至可以根据乘法分配律先做适当改写,使计算更简便。

  这样设计,使学生经历了两轮比赛,对运用乘法分配律可以使计算简便有了初步的体验,并且产生了浓厚的学习兴趣,对下一课时运用乘法分配律进行简便计算打下了良好的基础。最后增加了一个变式题:“5件夹克衫比5条裤子贵多少元?”这是乘法分配律的变式,这在第三课时将会碰到这种题型,所以这里先埋下一个伏笔。由基本题到变式题,有机地联系在一起。使学生逐步加深认识,在弄清算理的基础上,学生能根据题目的特点,灵活地运用所学知识进行练习。从课堂反馈来看,学生热情较高,能够学以致用。学生通过自己的努力以及和同学的交流合作,思维能力得到了发展。

  教学过程是一个不断探讨的过程,不断追寻的过程。作为一名数学老师,希望能在与学生有限的接触时间内帮助学生更快更好地养成良好的数学学习习惯,使我们的学生终身受益。这是一个值得我永远追求并为之努力的目标。

乘法分配律教学反思8

  乘法分配律的教学是在学生学习了加法交换律、加法结合律及法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。故而,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证……

  1、关注学生已有的知识经验。以学生身边熟悉的情境为教学的切入点,激发学生主动学习的.需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境――为参加“阳光伙伴”的32 名运动员购买统一服装。通过两种算式的比较,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。

  2、展示知识的发生过程,引导学生积极主动探究。先让学生根据提供的问题,用不同的方法解决,从而发现(35+25 )×32=35 ×32+25 ×32 这个等式,让学生观察,初步感知“乘法分配律”。再根据“老师还有其他选择吗”?这一问题,再次引出(35+25 )×32=35 ×32+25 ×32 ,最后,要求学生照样子写出几组这样的等式,引导学生再观察,让学生说明自己发现的规律。这样学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。不仅让学生获得了数学基础知识和基本技能,而且培养学生主动探究、发现知识的能力。

  3、教完之后,感觉在练习的设计上,还太拘礼与课本,虽然引导学生发现了定律,但没有相配套的练习使学生对所学知识加以巩固、应用。对学生掌握知识的情况不能及时反馈,对如何用活、用好教材还需进行进一步的思考。

  

乘法分配律教学反思9

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。所以本堂课我通过口算、读算式、写类似算式等多种方式让学生去感知乘法分配律,最后由学生总结出乘法分配律概念。本堂课我感到比较满意的地方,就是把课堂的主体权交给了学生,学生们都很主动积极的参与到学习中来,可是不足之处颇多。

  1、在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。

  结合学生的掌握情况我觉得教学此内容需要注意以下几点:

  1、区分乘法结合律与乘法分配律的特点,多进行对比练习。乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的`和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

  2、学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

  3、多练。针对典型题目多次进行练习。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103—65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

  《乘法分配律》教学反思11

  乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律、乘法结合律的基础上进行教学的。在本单元运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律灵活地进行简便计算。

  在课堂上,创设了植树活动的情境,求一共有多少名同学参加了植树活动。在课堂中,鼓励学生独立思考,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(4+2)×25=428×25+2×25。

  在学生理解了乘法分配律后,运用变式练习加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。也就是乘法分配律也可以反着用。最后通过多种形式的练习让学生深入理解乘法分配律的意义。

  通过学习,一些学生已掌握,但也有一些学生的语言叙述不熟练,虽然会背用字母表示的式子,但是不会灵活应用。还有一些学生容易把乘法分配律和乘法结合律弄混淆。

  所以在复习巩固时,要加强乘法结合律与乘法分配律的对比,让学生对这两个运算定律的结构更清晰。还要加强对乘法分配律意义的理解,通过不同形式的试题的演练,灵活掌握应用运算定律进行简便计算。

乘法分配律教学反思10

  ①1355+5587=55(13+87)=5513+5587

  ②8(125+9)=8125+9

  ③(100-7)25=10025+725

  ④9947=(100-1)47=10047-1

  ⑤35201=35(201-1)

  ⑥79125=125(80-1)=12580+1251

  ⑦79125=125(80-1)=12580-1

  ⑧1252532=1258+425

  ⑨88125=808125

  ⑩24335=(245)33=10033

  学生对于乘法分配律和结合律极容易混淆,而且符号容易抄错。针对这些情况,在教学中应该注意什么呢?

  1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

  教学时我们往往注重等式两边的外形特点,即a(b+c)=ab+ac缺乏从乘法意义角度的理解。这时教师可提出为什么两个算式是相等的?这里不仅从解题的角度理解,如(2+7)3=23+73是相等的,还有从乘法的意义的角度理解,即左边表示出3个9,右边也表示出3个9,所以(2+7)3=23+73

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律的特征是两个数的和乘一个数或两个积的和。在练习题中(40+4)25与(404)25这种题学生特别容易出错。为了更好地掌握,可多进行一些对比练习,如进行题组对比25(8+4)和2584;25125254和25125+258;每组算式有什么特征和区别?符合什么运算定律?应用什么运算定律可以使计算简便?为什么要这样算?

  3、让学生进行一题多解的练习,加深对乘法结合律和乘法分配律的理解

  如:12588;10189你能有几种方法?12588①竖式计算②125811③125(80+8)④(100+25)88等等。10189①竖式计算②(100+1)89③101(100-1)④101(80+9)⑤101(90-1)等.对于不同解法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?力争达到用简便计算法进行计算成为学生一种自主行为,并能根据题目的`特色灵活选择适当的算法的目的.

  4、多练

  针对题目多次练习。练习时注意练习量和时间的安排。刚开始可以天天练习,过段时间以后可以一两天练习一次,再到一周练习一次,典型题型课选择(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。

  对于比较特殊的题目可以间断性练习,对优生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。

  只有在理解的基础上反复练习,才能使孩子对于乘法分配律牢固掌握,我将在反思过程中制定出切实可行的计划,尽快使孩子消化吸收。

乘法分配律教学反思11

  今年我“高升”了!从毕业开始,一直在一二年级的数学徘徊,今年“高升”到了四年级!得到消息后,先是兴奋,再是忐忑。兴奋的是终于能教大孩子了。忐忑的是能教了这些大孩子吗?于是每天像是刚工作时一样,每天手写备课、拎着凳子去听师傅的每一节课,不敢有丝毫怠慢。更忐忑的是接到通知,于老师要来听课,其中有我!于是马上请教我的师傅车老师,车老师认为《乘法分配律》是一节数学味很浓的课,而且是一节特别值得研究的课,于是决定讲这节课。经过初步备课,我发现乘法分配律的运用属于运算律中最有难度的部分,而且类型颇多,每一种都能让学生琢磨半天,这让我感觉这节课确实很有意思,也很有挑战。

  因为从来没有执教过高年级,我决定先“拜访”名师。于是我上网搜视频,设计。当我看到葛丽霞老师的视频,我被惊艳了!课堂中的每个环节都让我感觉眼前一亮,几个精彩瞬间如“乘法分配律的探索过程、用字母表示法还有课的小结……”仍记忆犹新,于是我决定就模仿葛丽霞老师的这节课。视频看了三遍,教案看了无数遍。于是就“拿来”了这节课。

  可是经过于老师的指导,我发现,我模仿的是教案的话,每一句话后面深意,每一句话的目的,我真的明白了吗?备课,备了教案,备了老师,却把最重要的要素——学生,忘记了。没有找到学生的认知起点,没有探索到学生的易错点,难点。后来,与我的师傅车老师一起研究,对教案进行了重建,重建教案主要有以下几个改进:

  1、形意结合。

  初次教学乘法分配律时,由于对教材的挖掘比较肤浅,在教学中,只是重视了对“两个数的和与一个数相乘,要用括号里的每一个加数分别与这个数相乘,再把积相加”这句话的理解,学生对乘法分配律的印象完全停留在外形上,根本不知道为什么要用括号里的每个加数分别与括号外的数相乘,结果他们在应用时,只会按照总结出的规律生搬硬套,全班竟有一半的人出现了问题;当课堂进行到乘法分配律的逆运用时,很多学生更是不知道该从何入手,课堂效果特差。于是,重建教案中,在引导学生发现规律时,不仅注意了等式两边的“外形”结构特点,即“两个数的和与一个数相乘,要用括号里的每一个加数分别与这个数相乘,再把积相加”,而且重视了对规律的本质--乘法意义的理解。借此机会我再次打开教学参考,进行了细细地研读。“对12×105简算时,要将105想成100与5的和。先求100个12是多少,再求5个12是多少,合起来就是105个12是多少。”是呀,在引导学生发现规律时,我只注意了等式两边的“外形”结构特点,却缺乏对规律的本质--乘法意义的'理解。

  2、讲解到位,注重知识点的前后联系

  初建教案时,最后环节设计了展示二年级两位数乘一位数,以及三年级两位数乘两位数的电子课本,其目的是将前后的知识点加以联系。我的课堂设计也延续了这一亮点,可是我只是自顾自的讲解了一番,孩子根本不知所云!

  起初我的感觉是这一环节主要是考虑优等生的提升,所以在讲解时也只是匆匆了事!但是,课后我觉得应该让孩子明白回顾这一环节的内容,在出示乘法情境图的时候可以采用课件展示的方式,出示23×(10+2)=23×10+23×2这一算式。为了让学生更好地理解以前运用过乘法分配律,还可出示长方形的周长公式(a+b)×2=a×2+b×2,唯有此,才能够将前后知识点联系起来,水到渠成。

  新航程的号角已经吹响,我想我应该以此次讲课为契机,适应数学教学的变化,向名师课堂学习,从“拿来”到“思考”,关注学生,让数学回归本质,尽自己最大的努力让每一个孩子学到有价值的数学!

乘法分配律教学反思12

  昨天,我与全班同学一起进行了乘法分配律探讨学习,从作业的反馈中,一部分同学的作业相当完美,对公式的应用,变形拓展都能应用自如;我也发现部分学生的正确率很低,特别乘法分配律的“分别”相乘理解得不清楚,没有把每个加数与因数相乘,造成作业正确率低。针对这种情况,在教学中应该注意些什么,我积极思考,与同学进行交流,找出他们思维中出错的原因,正确进行补救,以达到对乘法分配律的正确运用,灵活应用。

  一、乘法分配律的教学时,注重从例题的解答中引导抽象出乘法分配律。强调注重它的外形结构特点,也要同时注重其内涵。

  教材中植树情境图给出了以下的条件:一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树,“一共有多少名同学参加植树活动?”这一问题,得到了如下两种解答方法。

  方法一:①每组有多少名同学? 2+4=6人

  ②25组共有多少名同学参加植树? 6×25=150人

  综合列式:(2+4)×25

  =6×25

  =150(个)

  方法二:①挖坑种树有多少人? 4×25=100人

  ②抬水浇水的有多少人? 2×25=50人

  ③一共有多少人? 100+50=150人

  综合列式:4×25+2×25

  =100+50

  =150(人)

  同学们很容易得出(4+2)×25和4×25+2×25这两个算式结果相等。这时同学们往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个数的积的和,而忽视从乘法意义角度去理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解(4+2)×25=4×25+2×25是相等的,还要从乘法的意义的角度理解,即左边表示6个25,右边表示4个25加2个25,等于6个25,所以,(4+2)×25=4×25+2×25

  二、注意乘法分配律的`特点,多进行练习。

  乘法分配律特征是两数的和乘一个数或两个积的和。在练习时学生特别容易出现错误。把算式做成(80+8)×125

  =80×125+80

  =10000+80

  =10080

  为了学生更好地掌握可以让学生划出分别相乘的箭头如:

  提醒同学把箭头画出来,把两个加数“分别”与括号外的因数相乘,这样尽量减少一些把一个加数乘掉的同学。

  三、多进行分组练习

  一组:15×(8+4) (80+8)×125 (40+4)×25

  47×(100+1) 78×(200+2) (100-1)×125

  在练习上述题后,让学生观察括号里的数如果不运用乘法分配律会变成怎样的一个算式:

  15×12 88×125 44×25

  47×101 78×202 99×125

  这些算式我们如何将一个因数拆成两个数相加的形式,这两个加数尽量要拆成整十整百或是与外面的数相乘能得整十整百的数。

  在让学生在对乘法分配律基本公式的运用掌握较好之后,再进行第二组乘法分配律反方向运用的形式。

乘法分配律教学反思13

  《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。通过观察几组数目不同的算式,引导学生发现规律,然后归纳、总结,用语言表述出来。在教学时,我也是按照教学参考书的建议安排教学过程的。先复习乘法的交换律和结合律,接着导入新课。通过

  (18+7)×6○18×6+7×6、20×(15+90)○20×15+20×3

  让学生观察、分析、思考、归纳,最后在教师的引导下总结出乘法分配律并加以运用。

  教学过程中,导课比较快,在归纳乘法分配律的内容时,主观上是时间紧张,可课后想想,实际上是引导不到位。课堂上学生气氛不活跃,思维不积极,难以完整地总结出乘法分配律。结果,学生对乘法分配律不太理解,运用时问题较多。如当天在作业时出现的问题就比较多:45×103有三分之一的`学生直接乘,不会简便;尤其是计算59×21+21时,学生发现不了它的特点,不会运用乘法分配律,可以说,本节课上得不是很成功。

  今后的工作中,要多向以下几个方面努力:

  1.多听课,多学习。尤其是青年教师的课,学习他们的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。

  2.加强同同课教师之间的沟通和交流,相互学习,取长补短,共同进步。

  3.认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数,游刃有余。

乘法分配律教学反思14

  —乘法分配律教学设计与反思

  设计说明

  当我给学生讲到练习四第七题的时候,觉得这道题目可以开发一下用来上乘法分配律,让学生自己制作两个长不一样,宽一样的长方形,通过动手操作来获得求面积和的方法,自然的引出乘法分配律。然后看了下这节课的课后练习,里面有乘法分配律的逆向运用的题目,在其后56页的简便运算中也能用到逆向运用的知识,于是就把这个运用单独列出来作为一个知识层次,联想到我们以前还学习过两数之和乘另一个数等于这两个数分别去乘第三个数再想减的知识,于是就去习题中找有没有类似的题目,在55页第五题中求四年级比五年级多多少人时,如果用乘法分配律的延伸知识可以使计算简便,又看到练习五的三、四两题,就必须要知道这个知识才好解决,于是就把乘法分配律的延伸作为第三个层次的教学了,按照这个思路设计了这节课,实际上下来的效果不错,既调动了学生的学习热情和主动性,又培养了学生自主探索,发现并总结规律的能力。 教学设计

  教学内容

  苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。 教学目标

  1、学生在解决实际问题的过程中发现并理解乘法分配律,并能运用乘法分配律使一些运算简便。

  2、学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表

  达数学规律的意识,进一步体会数学与生活的联系。

  3、学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  教学过程

  一:创设情境导入

  提问:长方形的面积怎样求?

  指明回答

  这里有长分别是10厘米和6厘米,宽都是4厘米的两个长方形纸片,请同学们自己动手把它们组成一个新的长方形。(课件出示题目)

  学生动手操作

  (课件出示两个长方形组合的动画)

  二:自主探索,交流合作

  1、交流算法,初步感知

  提问:请同学们自己求一下新长方形的面积。

  教师巡视,观察学生不同的解法

  反馈:请学生说一说自己的解法,应当有两种解法,如果学生说不出来应加以引导

  (课件出示两种解法)

  谈话:两个算式解决的都是同一个问题,它们计算的结果也相同,能把它们写成一个算式吗?

  学生自己写一写,请学生说一说,教师相机板书。

  2、比较分析,深入体会

  提问:算式左右两边有什么相同和不同之处呢?小组内交流。

  反馈交流,在学生发言的基础上,教师根据情况相机引导:等号左边先算什么,再算什么,右边先算什么,再算什么呢?使学生明确:等号左边是10加6的和乘4,等号右边是10乘4的积加6乘4的积。

  设疑:是不是类似这样的算式都具有这样的性质呢?学生举例验证。

  组织交流反馈。可适当的选取一些数字很大的和很小的例子以及有乘数是0的例子等特殊情况。

  3、规律符号化,揭示规律

  提问:像这样的算式,写的完吗?

  我们可以尝试用自己的方法去表达这个规律,同学们自己试着在小组内写一写,说一说。

  反馈引导学生用不同的方式来表达规律。

  小结揭示:两个数的和乘另一个数等于这两个数分别乘另外的数再相加。用字母表示:(a+b)×c=a×c+b×c,(板书并课件出示)这就是我们今天要学的乘法分配律。(板书课题)

  三:实践运用,初步理解。

  1、想想做做1

  学生自主完成,组织交流。

  第二小题教师板书,并启发学生从算式所表示的意义角度说一说对这个算式的 理解。并在板书上用箭头标明左边12出现了2次,右边在括号外面的数字就是

  12.并向学生介绍这可以称作是乘法分配律的逆向运用(板书)

  2、想想做做2

  自主完成,组织交流。

  第三小题引导学生从乘法意义角度去理解。并使学生明白74×1可以看做1个

  74,也就是74.

  第四小题要和想想做做题1的第二小题做对比。

  四:拓展延伸,内化新知

  再次出示两个长方形纸片,提问:如何比较这两个长方形的大小

  学生反馈,引导说出可以重叠比较。学生动手实践

  再问:那么大长方形比小长方形大的面积是那一块?

  让学生自己动手摸一摸,课件出示重叠动画,并把多余部分突出显示。 提问:如何求多出来的面积呢?请同学们自己列式解答。

  学生若想不到可以用大长方形面积减去小长方形的面积,教师可以适当的提 示。

  学生反馈,交流。课件出示两种解法。

  谈话:这两个算式结果相同,解决的'也是同一个问题,可以把它们写成一个算 式,课件出示并板书。

  再问:这个算式左右两边有什么联系,引导学生说出:两个数的差乘另一个数 等于这两个数分别与第三个数乘,再相减。

  谈话:这个规律用字母如何表示呢?自己试着写写看。

  学生反馈,教师板书并课件出示。说明这个可以看做是乘法分配律的延伸。 五:解决实际问题,内化重点难点。

  想想做做题5

  课件出示,学生读题。

  问题一,要求学生列出不同的算式解答,并通过讨论引导学生适当的解释两个 算式之间的联系。

  问题二,鼓励学生列出不同的算式解答,并引导学生适当的解释两个算式之间 的联系,加强学生对

  乘法分配律延伸的理解与内化。

  反思:

  这节课我是分三个层次来教学。

  第一个层次是乘法分配律的教学,学生通过运用不同的方法求新长方形的面积来体会规律,感知规律的合理性。这个环节强调学生的自主探索和动手观察能力。 第二个层次是乘法分配律的逆向运用,通过想想做做题1的第二小题的教学,引导学生明确可以从乘法的意义角度来理解算式,并体会乘法分配律的逆向运用。

  第三个层次是乘法分配律的延伸,通过让学生动手操作,知道如何比较两个长方形的大小,并通过动手指一指,知道多出的面积就是两者相差的面积。在学生自己动手求解的过程中,初步的体会到诸如:(10-6)×4=10×4-6×4也有类似的规律,并尝试写出用字母如何表达。

  最后通过解决实际问题的形式,把发现的规律加以运用,从2个小题的解答中初步体会乘法分配律和乘法分配律延伸的应用。

乘法分配律教学反思15

  教材提供了这样一个主体图:春季里,同学们开展植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。需要解决的问题是:一共有多少人参加植树活动?学生会用两种不同的方法分别列出算式,接着通过计算发现,两个算式可以用=连接,即25(4+2)=254+252,从而通过比较等号两边两个算式的不同与相同,概括出乘法分配律。当我在一个班按照此教学设计教学后,我发现效果并不理想,表现有两点:

  ①有些学生只是机械的记忆了乘法分配律的公式,例如看到3544不能想到3540+354;

  ②由于没有真正理解乘法分配律的内涵,所以完全不能理解其逆应用以及当两个数的差乘一个数时应用乘法分配律。如:他们认为6464+3664(64+36)64;265(105-5)=265105-2655。

  针对此情况,我重新设计了教案。增加了一个问题:负责挖坑、种树的同学比负责抬水、浇水的同学多多少人?这样学生又列出另外两个算式,通过计算后用等号连接: 25(4-2)=254-252,接下来,我引导学生观察、对比两组算式,充分地去发现相同点与不同点。这样一来,促使了学生去寻找事物之间的联系,抓住本质,寻找共同点,促进交流,顺利地实现了自我构建和知识创造。学生的发现自然也就更丰富、更有深度了:无论是两个数的和还是两个数的差去乘一位数,都可以先把他们与这个数分别相乘,再相加或者再相减。此外,我还引导学生从右到左的观察等式,尝试用乘法的.意义去理解乘法分配律,即:4个25加2个25就等于(4+2)个25,4个25减2个25就等于(4-2)个25,这样帮助学生突破乘法分配律逆应用这个教学难点。

  我通过对两个班不同的教学设计,感受到:认真钻研教材,多动心思,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。

【乘法分配律教学反思】相关文章:

乘法分配律教学反思11-11

《乘法分配律》教学反思03-04

《乘法分配律》教学反思(15篇)03-17

乘法分配律教学反思(15篇)03-13

《乘法分配律》教学反思15篇03-05

乘法分配律教学反思15篇02-19

乘法分配律教学反思通用15篇04-13

乘法分配律教学反思汇编15篇03-18

《乘法分配律》教学反思(集合15篇)03-26

乘法分配律教学说课稿12-06