圆柱的表面积教学反思

时间:2024-06-20 18:02:33 教学反思 我要投稿

圆柱的表面积教学反思

  身为一名到岗不久的老师,课堂教学是重要的工作之一,通过教学反思可以很好地改正讲课缺点,那要怎么写好教学反思呢?以下是小编帮大家整理的圆柱的表面积教学反思,仅供参考,欢迎大家阅读。

圆柱的表面积教学反思

圆柱的表面积教学反思1

  圆柱体的表面积是学生学了长方形、正方形、平行四边形、三角形和梯形等多种平面图形和长方体、正方体的表面积的基础上展开教学的。在学生从认识直线图形到曲线图形的过程中,不仅拓展了他们的知识面,丰富了学生空间与图形的学习经验,而且也给学生探索学习-圆柱体的表面积是学生学了长方形、正方形、平行四形、三角形和梯形等多种平面图形和长方体、正方体的表面积的基础上展开教学的。在学生从认识直线图形到线图形的过程中,不仅拓展了他们的知识面,丰富了学生空间与图形的学习经验,而且也给学生探索学习的方法注入了新的内容,并使得学生的空间观念得到了进一步的发展。

  图形的学习对于学生来说是一个抽象的知识,只有结合生活,练习生活,让学生亲眼去看一看,亲手去做

  一做,亲自去想一想,才能使之成为具体的、可接受的知识。本节课的教学设计分为三个层次。教学层次非常清晰。

  第一层次:巩固上节所学《圆柱体的认识》的有关知识。学生通过观察实物,掌握圆柱体的底面、侧面和高,能正确地说出圆柱体的特征。

  第二层次:推导圆柱体的侧面积和表面积计算公式。首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。通过实物观察和实验,使学生了解到这个长方形的长就是圆柱的底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形的面积公式很自然地推导出求圆柱体的侧面积公式。在会求侧面积这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求表面积的计算方法。使学生认识到立体转平面、形变量不变的辨证关系,培养学生们的观察、分析能力。

  第三层次:针对本节所学知识设计了一些基本应用题。安排有:求圆柱的侧面积,求圆柱的表面积。是对圆柱侧面积和表面积公式的巩固。

  郑老师极其注重数学知识生活化。一方面,注重从生活现象中提取数学知识,引入数学学习;另一方面在学生掌握了一定知识后,及时应用所学知识解决生活中的问题,也可以说数学的'回归。比如练习中帽子、通风管表面积的计算等,我想如果给足时间,数学知识的回归在这些课上有更多的体现和应用。在六年级的课堂上,郑老师注重学生的探究活动是很明显的。以学生为中心,以学生的主动探究为主,

  让学生敢想、敢说,从而主动的去获取知识。同时,注重操作活动在图形学习中的地位。操作是学生认识图形、探究图形特征的重要途径,正是操作活动,学生的探索学习才能得到顺利展开,也正是操作活动,学生对有关数学知识的体验更加真切和深刻。最后,郑老师注重学生的思维表述。如果说操作活动能更强调知识的深刻性,

  那么语言表述也就是说,就是对知识的梳理,知识的罗列,知识的系统话整理和知识的重组。

  整堂课也有值得探讨的地方。语言的衔接稍有跳跃。课堂的连接语是课堂驾驭能力的表现,也反映了教师

  设计课堂,生成课堂之间的一种应变。同时,这也与教师对于教学设计过程的熟悉程度有关。

圆柱的表面积教学反思2

  教学要求:

  1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

  2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

  教学重点:圆柱表面积的计算。

  教学难点:圆柱体侧面积计算方法的推导。

  教法运用:本节课采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探求圆柱侧面积的计算方法;同时通过多媒体的辅助教学,使新授与练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。

  学法指导:采取引导 放手 引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

  教具:圆柱体教具、多媒体课件。

  学具:圆柱形纸筒、茶叶桶。

  教学过程:

  一、检查复习,引入新课

  (复习圆柱体的特征)

  师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。

  问:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?

  引入:两个底面和侧面合在一起就是圆柱的'表面。这节课,我们就一起来学习圆柱的表面积。

  二、引导探究,学习新知

  (一)教学圆柱表面积的意义

  设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?

  板书:底面积×2+侧面积=表面积

  要求圆柱的表面积,首先应该计算它的底面积和侧面积。

  (二)根据条件,计算圆柱的底面积。

  圆柱的底面是圆形,同学们会求它的面积吗?

  (多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)

  条件:(厘米) r=3 d=4 c=6.28

  底面积(平方厘米) 28.26 12.56 3.14

  (三)教学圆柱体侧面积的计算

  1、引导探究圆柱体侧面积的计算方法。

  (1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?

  想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?

  (2)小组合作探究。(剪圆柱形纸筒)

  (3)汇报交流研究结果,多媒体课件展示。

  (4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

  2、计算圆柱体的侧面积。

  多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。

  条件(厘米) h=5 h=8 h=10

  侧面积(平方厘米) 94.2 100.48 62.8

  (四)教学求圆柱的表面积。

  1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

  2、学生根据数据进行计算?

  3、汇报计算方法及结果,媒体出示结果进行验证。

  表面积(平方厘米) 150.72 125.6 69.08

  (五)小结:圆柱表面积的意义及计算方法。

  三、练习巩固,灵活运用

  (一)多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图,引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?

  指出:圆柱表面积在实际计算中的意义。

  (二)根据要求练习。

  1、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?(只列式不计算)

  2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?(只列式不计算)

  3、用铁皮制一个圆柱形的油桶,底面半径3分米,高12分米。制这个油桶至少要用铁皮多少平方分米?(得数保留整十平方分米)

  根据学生的计算结果,教学用“进一法”取近似值。

  小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。

  (三)操作练习。

  根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。

  练习要求:(多媒体出示)

  讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?

  测量:借助工具测量出需要的数据(取整厘米数),并做好记录。

  计算:根据量得的数据,列出相应的算式并算出结果。

  反思:

  一、合理灵活地组织和利用教材

  “圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。

  二、较好地体现了教师主导与学生主体作用的统一。

  本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。

  1、直观演示和实际操作相结合

  新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作最后探究出侧面积的计算方法。

  2、讲练结合。

圆柱的表面积教学反思3

  无论是已知圆柱底面半径和高,或是已知底面直径、周长和高求表面积都必须经过七步计算(注:平方也算为一步)。这么烦琐的计算,对于学生而言是有一定难度的,且在列式中,还必须正确选用圆的周长和面积计算公式,因此解答圆柱体的'表面积其实是对学生综合应用所学面积公式的一大考验。

  为适当降低教学难度,我在学生初次接触圆柱体表面积一课时,将教学目标仅定位于能够掌握公式,并能正确求出圆柱体的表面积,而不涉及灵活解决实际问题的练习(即不教学例4),整节课重在夯实基础。从列式情况来看,教学效果不错,可一到计算,问题还是频频凸显。特别是有关于∏计算,学生一定要认真计算才能得出正确结果,三位数乘三位数学生平时练习较少,所以极易计算出错。在此,只有适当加大计算指导力度及练习密度,提升作业正确率。

圆柱的表面积教学反思4

  圆柱体的表面积计算是一个难点。本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有写同学是因为对其中的公式或意义没有真正理解。不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,列式计算时漏洞百出,甚至还有一部分同学因为计算又导致前功尽弃。

  接触到一些实际问题的时候,由于学生的生活经验和社会经验都比较浅薄,从而对一物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法椰油一定的不理解,需要通过反复练习才能达到一定的程度。

  [圆柱的侧面积和表面积]

  沿着圆柱的一条母线把圆柱剪开后展开,圆柱的侧面就由曲面转化为平面,展开图是一个矩形,矩形的长等于圆柱底面的周长c,矩形的宽等于圆柱的高h。这个矩形的面积就是圆柱的`侧面积。由此可知,圆柱的侧面积等于底面的周长乘以高,即s圆柱侧=ch=2πrh(r为圆柱底面的半径)

  圆柱的侧面积与两个底面圆面积的和,就是圆柱的表面积(也叫全面积)。即s圆柱表=s圆柱侧+2s底=2πrh+2πr2

  教学时,要把圆柱的侧面积和表面积区别开来。可用纸板做成圆柱模型,然后将侧面展开,导出计算圆柱侧面积和表面积的方法,并先概括成文字公式,再过渡到字母公式。

  学生计算烟囱、水管、无盖桶、封闭桶罐等用料面积时,容易多算或少算底面积,灵活运用公式比较困难。可以多观察实物、模型,增加感性认识。也可以给出一些计算式子,要学生说明是求圆柱体的哪几个面的面积。例如:s=2πrh,是求();s= 2πrh+πr2,是求();s=2πrh+2πr2,是求()。

  《圆柱的侧面积和表面积》教学片段

  在以往教学长方体、正方体的表面积时,常常为学生在学习表面积后的变式练习中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪个面而头疼。

  我想,关于圆柱的表面积也会存在这样的问题吧。为了防患于未然,我想,是不是在新课的教学中就为这些情况作了一些铺垫呢?因此,在教学这一课时,我先引导学生复习了圆柱体的特征,然后设计了如下问题:

  求铅笔涂漆部分的面积是求()的面积;

  压路机滚动一周压过多大路面是求()的面积;

  求一个水桶用多少材料是求()的面积;

  求汽油桶用多少铁皮是求()的面积。

圆柱的表面积教学反思5

  《圆柱的表面积》是北师大版六年级下册第一单元的圆柱与圆锥之圆柱表面积第一课时,这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用进一法取近似值。在此前的学习中,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质及计算方法。通过剪一剪的活动来探索圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:斜剪!展开之后是什么图形?有人猜是三角形,有人说是梯形,有人说平行四边形,带着种种可能同学们又开始拿出另一个准备好的圆柱,然后沿着斜线剪开,平行四边形展现在同学们面前。紧接着用长方形的面积推导侧面积公式,长方形的长是圆柱的底面周长 ,宽是圆柱的高。得出圆柱的侧面积等于底面周长乘高。通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。

  实践也使我们体会到,创建生活课堂应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的'平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。学生在动手、动脑、动口的操作过程,实际上就是一种积极有效的意义建构过程。在这个不断的操作、观察、体验的过程中,学生都在思考,都在感悟。体验的越丰富,对概念的感悟也就越深刻。圆柱侧面计算方法和表面积计算方法都是学生在操作、体验中获得的。

圆柱的表面积教学反思6

  著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。

  圆柱的表面积教学,关键在于通过圆柱的侧面展开图推导出圆柱的侧面积公式。教材中只介绍了把圆柱沿着高将侧面展开,得到一个长方形。通过长方形的面积推导出圆柱的侧面积,这是一种普遍的现象,学生容易理解和接受。但为了培养学生的自主学习能力和自主探究的兴趣,我将圆柱侧面积的教学大胆改革,让学生试先准备好各种圆柱形的纸盒,给学生足够的空间让学生自主探索圆柱体的侧面展开情况及侧面积的计算方法。整节课,学生学习积极性非常高,收到了好的教学效果,也使其自主探究能力和小组合作能力都得到了提高。

  反思如下:

  一、圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:“斜剪!”“展开之后是什么图形?”有人猜是三角形,有人说是梯形,有人说平行四边形,带着种种可能同学们又开始给圆柱穿上一层衣服,然后沿着斜线剪开,结论不用说,平行四边形展现在同学们面前。继续用平行四边形推导侧面积公式,平行四边形的底是圆柱的底面周长,高呢?是不是平行四边形的斜边?经过一番争论之后,得出高需要重新做垂线。

  二、展开之后的图形可以怎样还原成圆柱?数学课要培养学生的思维能力,如果会展开那只是顺向思维,展开后会还原才能培养他们的逆向思维。“长方形和正方形都有两种还原方法,那平行四边形是否也有两种还原方法?”问题抛出又产生了分歧,很多同学只会按剪开之后的形状还原,再换个方向竖起来就不行了,总是上下各有两个尖角,其实这是学生拿平行四边形的方式有问题,让他们把平行四边形的`斜边贴到桌子上再还原,这样就有很多人展开了笑脸。“找窍门,怎样不贴到桌子上也能正确还原?”细心的同学发现只要捏住相邻的两个角就能轻松还原了,一句话——角对角。得到结论:只要是平行四边形一定可以围成圆柱。

  通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。

  实践也使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。

圆柱的表面积教学反思7

  因为疫情迟迟没有好转,离开学时间还是遥遥无期,所以培育小学秉着“停课不停学”的理念,开始了网课教学。

  我今天教学的内容是人教版六年级下册《圆柱的表面积》,本节课的教学难点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,重点是灵活运用侧面积、表面积的有关知识解决实际问题。本节课的教学,从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中让学生自己去解决,让学生在动手操作、合作探究中学习。

  一、激情导课,激发学生的求知欲。

  复习开始时,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?”就在学生们的猜测下,我拿出了课前藏好的圆柱。我继续发问“谁能给大家介绍一下这位新朋友?你们还想知道它的什么?”然后,让学生动手摸一摸手中的圆柱体,“谁能告诉大家你摸到了什么?”形成圆柱表面积的表象,从而很轻松的得出:圆柱的表面积等于圆柱的侧面积和两个底面面积之和。

  二、把握重点,突破难点,合理利用教材。

  “圆柱表面积”这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。教材安排了两道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“近一法”取似值作为一个知识点。再结合学生的实际,巧妙的把他们联系成一个整体,做到收中有放,放中有收。

  三、教学方法上,采用直观演示和实践操作相结合。

  新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的`意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作。让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。

  再让学生以小组为单位,通过看一看、摸一摸,自己观察、发现,思考怎样求圆柱体的表面积? 讨论:求圆柱体的表面积需要知道哪些数据? 从而得出圆柱体表面积的计算公式。充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式,并运用幻灯片辅助教学,有利于学生对知识的理解及掌握。

  四、练习题的设计上由易到难,讲练结合。

  在练习题的设计中,遵循了从易到难的原则,先是已知周长、半径和直径求圆柱的侧面积,在此基础上再想一想已知这三个条件怎样求出圆柱的表面积。采用分步口答的方法,让学生说出自己的想法,从而达到熟练掌握求圆柱的表面积的计算方法。例4主动放手让学生独立解答,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。

  当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练;另外,在练习题的设计上都是只列式不计算的方法,没有让学生真正计算出侧面积和表面积;小组合作的初衷是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。

圆柱的表面积教学反思8

  一、合理灵活地组织和利用教材。

  “圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。

  二、较好地体现了教师主导与学生主体作用的统一。

  本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。

  1、直观演示和实际操作相结合

  新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。

  2、讲练结合。

  教学这节课,我改变了传统的先讲后练的教学模式,做到讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。具体做法是:在学生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3d=4c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7h=6h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的`表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。

  三、较好地培养学生的合作意识和实践能力。

  1、培养了学生的合作意识。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作能力。

  2、培养了学生的实践能力。

  新课程提出:“使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。”所以在课的最后,我设计了一个操作练习:小组合作测量计算制作所带的圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后算出结果。学生在动手实践中做到了有目的、有计划、有步骤。并且根据实物的特点想出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程标准的要求。

  四、较好地利用现代化的教学手段。

  本节课合理地利用了多媒体教学技术。在讲练过程中,动态逐一出示三个圆柱及条件,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的油漆桶、水桶、羽毛球筒等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系。

圆柱的表面积教学反思9

  “圆柱的表面积”历来是学生学习的难点。观察发现,难点一:圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个“化曲为直”的过程。这是理解的难点;难点二:在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;难点三:计算难度大,无论是圆的周长和面积计算中都涉及圆周率(∏);难点四:类似制作烟囱、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。如何有效组织教学,谈谈自己的粗浅的看法。

  一 抓住特征,建立表象。在六年级上学期,已经学习了长方体和正方体的表面积,学生对表面积的概念并不陌生。教学圆柱的表面积时,重点是通过制作圆柱模型、观察圆柱展开图,让学生理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的。通过操作,真正建立圆柱侧面的表象。

  二 突破难点,紧抓联系。探索并理解侧面积的计算方法是这部分教学的难点。圆柱的侧面是一个曲面,例2结合具体情境,展示了圆柱的侧面展开图,沿着高将侧面展开后是一个长方形。“化曲为直”过程中,教学重点要抓二者之间的联系,即展开后长方形的长就是圆柱的底面周长,宽是圆柱的高。通过“展”、“围”的反复操作,让学生切实建立这两者之间的联系,有利于突破难点。

  三 抓住本质,理清思路。圆柱的表面积包括一个侧面和两个底面。计算圆柱的`侧面积时要用圆柱的底面周长乘高,而圆柱的底面积则需用到圆的面积公式。在同一题里,周长公式与面积公式混淆也是计算圆柱表面积出错的原因之一。怎样能更好的理清思路,灵活的进行计算呢?我认为,尽量将复杂的问题简单化,以不变应万变。即圆柱的侧面展开图是一个长方形,计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。当然,涉及到解决具体的问题,我们就要联系实际具体问题具体对待。

  本单元的学习有利于发展学生的空间概念,有利于培养学生的思维的有序性,有利于培养学生认真审题的好习惯,提高学生灵活应用能力。

圆柱的表面积教学反思10

  本节课的教学采用操作和演示,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合。

  1、把握重点,突破难点,合理利用教材

  对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的`迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。

  2、直观演示和实际操作相结合

  通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知。

  3、讲解与练习相结合

  本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。

圆柱的表面积教学反思11

  本课用课前预习课上小组内交流的教学方式组织教学,课前布置了《圆柱的表面积》预习提纲 :

  1、什么是圆柱的表面积?

  2、沿着圆柱的高剪开圆柱的侧面,侧面展开图是什么形状?

  3、怎样求圆柱的侧面积?

  4、怎样求圆柱的底面面积?

  5、怎样求圆柱的表面积?

  课上学生很快讨论出圆柱体表面积的计算方法。由于学生在之前的学习中已经接触了“化曲为直”的数学方法,所以把圆柱体的侧面展开方形(或正方形)学生已经能想象和深刻理解,并且通过想象和推理能够明确展开的长方形的长(宽)就是圆柱体底面的周长,展开的长方形的宽(长)就是圆柱体的高,因此,学生对于怎样求圆柱体的表面积能够理解和初步掌握。

  但是,通过学生尝试计算圆柱体表面积的过程中,仍然存在许多问题,:学生对于圆柱体的表面积的计算方法虽然初步掌握但是很不熟练,具体表现在求圆的面积和圆的周长时,特别容易出现混淆,原因就是对求圆的面积和圆的周计算办法掌握欠熟练,特别是求圆的面积时,部分学生总是忘记把半径进行平方,或者是直接用给出的直径去平方,这都是对圆的面积计算办法掌握不熟练的表现;:学生的计算能力和计算正确率都有待提高,由于在计算过程中出现了圆周率,又有半径的平方的计算,所以很多学生的计算正确率很低。原因就是学生的口算能力、笔算能力都没有形成技能,只掌握计算方法但不能熟练准确的'计算,这都是学生能够准确求出圆柱体表面积的障碍。

  针对这种情况,我打算采取这样的办法:第一:强化学生对圆的面积和圆的周长、圆柱侧面积的计算办法。第二:在计算时提醒学生仔细认真,出错时要找出出错的原因,对证改错。同时结合课前三计算的时间,加强学生的计算练习。

  总之,让学生熟练准确的计算圆柱的表面积和侧面积,可以为下一步学习和计算圆柱的体积扫清障碍。

圆柱的表面积教学反思12

  1、重学生学习的过程。传统中的教学是教师直接出示圆柱的表面积计算公式让学生进行死记硬背,然后套公式计算。这是只重结果,不重过程的现象。这节课,学生初步了解了圆柱的表面是由两个相同的底面和一个侧面构成的,计算圆柱底面积就是计算圆面积。我在学生初步理解圆柱表面积的含义后,重点安排学生进行圆柱侧面积计算方法的`探索。学生通过剪、卷、滚等一系列活动探索出圆柱的侧面是一个长方形,从而推导出圆柱侧面积计算公式。

  2、学生成为有效学习者。有效地复习了圆的面积计算方法,有效地掌握了圆的表面积计算方法

圆柱的表面积教学反思13

  “圆柱的表面积”这部分教学包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。

  本节课在教学上采用了引导、放手、引导的方法,通过的“导”,鼓励积极、主动地探究新知。

  1、直观演示和实际操作相结合

  新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精设疑:圆柱的侧面是个曲面,计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在的启发下,学生以小组为,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。

  2、讲练结合。

  教学这节课,我改变了传统的.先讲后练的教学模式,做到讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。具体做法是:在学生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3d=4c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7h=6h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。

  1、培养了学意识。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作中,较好地培养了学生的合作能力。

  2、培养了学生的能力。

  新课程提出:“使学生初步学会运用所学的知识和方法解决一些的实际问题。”所以在课的最后,我设计了一个操作练习:小组合作测量计算制作所带的圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后算出结果。学生在动手实践中做到了有目的、有、有步骤。并且根据实物的特点想出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程标准的要求。

  本节课合理地利用了多媒体教学。在讲练过程中,动态逐一出示三个圆柱及条件,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将中的油漆桶、水桶、羽毛球筒等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观和理解,使学生感受到了数学与现实生活的密切联系。

圆柱的表面积教学反思14

  数学课程标准指出,有效的数学活动不能依赖模仿和记忆,动手实践, 自主探索,合作交流是学生学习数学的重要方式。而且要倡导学生主动参与,乐于探究,培养他们获取新知识的能力。本节课一开始,我没有直接告诉学生圆柱的特征,而是让他们自己观察,触摸,与同学对比,拿尺子量各自手中的圆柱,在观察,触摸,对比,测量中得出圆柱的特征。特别是在教学圆柱的侧面积时,我没有包办代替,充分让学生动手实践,操作,自己知道了圆柱侧面展开可能会出现的图形是长方形,正方形和平行四边形,而且弄明白了展开图形与圆柱各部分之间的关系,自己推导出了圆柱侧面积的计算方法,思路清晰,算理透彻,真正成了学习的主人。可以说,整堂课的学习过程,我不是让学生被动地接受教材或教师给出现成的结论,而是通过合理的实践活动,让学生经历了知识的'再创造'过程。由于学生经历了不断的'再创造',主动地从事数学思考,理解,在理解的基础上建构数学知识,所以整堂课的学习气氛和教学效果取得了双丰收。教师在本节课也真正体现了组织者,合作者,引导者的身份。对于圆柱的侧面积:重点在于圆柱的侧面与长方形的转化过程。如何把底面的周长、高与长方形的长、宽对应起来是关键。

  在这节课中,我是用一张长方形的纸卷也一个圆柱体的管子,做演示。同学们都能理解,把侧面打开就成了长方形,再换个角度,就能看到底圆周长=长方形的长,圆柱的高=长方形的宽。

  对于表面积的处理,我先让学生自己找找,什么是圆柱体的表面积。通过学生在书本中画,小组讨论得出;圆柱体的表面积=侧面积+两个底面积。

  本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。

  1、重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。

  2、重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。

  3、重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的'情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。

  圆柱体的表面积的计算是在学习了圆柱特征的基础上进行教学的,这节课的主要内容包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。在新课的进行中始终抓住重点难点,教学思路清晰,引导学生大胆探索思考,独立解决问题。教学中面向全体学生,做到精讲多练,讲练结合。让学生自己发现问题自己解决问题,在有争议的问题上教师能适时点拨学生自己去寻找正确的答案,使他们享受成功的喜悦,同时也把数学与生活紧密的联系起来,从而培养了学生学习数学的兴趣。

圆柱的表面积教学反思15

  1、直观演示和实际操作相结合

  新课开始,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的.启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。

  2、讲练结合。

  教学这节课,是以讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3 d=4 c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7 h=6 h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。

【圆柱的表面积教学反思】相关文章:

“圆柱的表面积”教学反思04-14

《圆柱的表面积》教学反思03-11

《圆柱的表面积》教学反思15篇03-14

圆柱的表面积教学反思(15篇)04-14

数学下册《圆柱的表面积》教学反思04-22

圆柱的表面积教学反思15篇03-14

《圆柱的表面积》教学反思(15篇)03-15

“圆柱的表面积”教学反思15篇04-14

圆柱的表面积教学反思(通用15篇)04-14