因数和倍数教学反思
作为一位到岗不久的教师,我们要有一流的教学能力,写教学反思可以很好的把我们的教学记录下来,那么优秀的教学反思是什么样的呢?以下是小编帮大家整理的因数和倍数教学反思,欢迎阅读与收藏。
因数和倍数教学反思1
《因数和倍数》是人教版小学数学五年级下册的知识点,主要教学因数和倍数的认识,以及找一个数的因数和倍数的方法。《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。
(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。
(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:鉴于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式ab=c直接引出因数和倍数的概念。
数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。
一、教学过程的反思
今天在教学前,我让学生学说话,就是培养学生对语言的概括能力和对事物间关系的理解能力。于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的因数和倍数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,又帮助学生理解了倍数因数之间的相互依存关系,从而使学生更深一步的认识因数和倍数的关系。层层推进,引入教学,留下悬念,充分调动了学生的积极性和求知欲。在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大。
在教学时,先让学生“用12个同样大小的正方形,摆成一个长方形,并用乘法算式把自己的摆法表示出来”,让学生动手操作、合作交流,怎样摆,有哪些不同的摆法?先让学生小组交流、操作后,以其中的一道乘法算式为例,引出因数和倍数的概念。这样的安排,体现了以学生为本,用学生已有的经验和动手操作能力,很好的调动了学生学习的积极性和主动性。一方面让学生乐于接受,是学生在展示自己的想法,老师仅仅是组织者;另一方面培养了学生善于观察和倾听他人的想法的良好学习态度。
对于找一个数的倍数比找一个数的因数的方法要容易些,所以我先教学如何找一个数的倍数,在学生学会了找一个数的倍数的方法基础上,再教学如何找一个数的`因数,这样教学便于学生自己探索并总结归纳出找一个数的因数的方法,体现了让学生自主学习。
在处理本节课的难点“找36的因数”时,我原来是放手让学生自己去找的。结果试时很多学生没有头绪,无从下手。时间倒是花去不少,可方法却没有多少可行的。我静下心来寻找原因,找一个的因数是学生以前从未遇到过的问题,自然不知道如何解决。再加上找一个数的因数比找一个数的倍数要难得多,我这样贸然地放手,学生当然不知所措了。后来,在处理找36的因数时,如何做到既不重复又不遗漏地找36的因数?我认为要对学生扶放得当,要有适当地扶,学生才能探索出方法。于是,我让学生回忆刚才的几道乘法算式,然后把找一个数的倍数的方法有效的迁移到找一个数的因数中。果然学生知道了该如何思考后,效果好了很多。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。根据学生的实际情况,教学找一个数的因数的方法,虽然学生不能有序地找出来,但是基本能全部找到,再此基础上让体会有序找一个数因数的办法学生容易接受,这样的设计由易到难,由浅入深,我觉得能起到巩固新知,发展思维的效果。
二、教法的运用实践
1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围,因此,对于学生和第一
接触的印象是没有什么可以探究和探索的要求,而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内,与小数无关,与分数无关,与负数无关(虽没学,但有小部分学生了解)。同时强调——非0——因为0乘任何数得0,0除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法,让学生清晰明确。因此,用直接导入法,先复习自然数的概念,再写出乘法算式3×4=12,说明在这个算式中,3和4是12的因数,12是3和4的倍数。
2、在进行延续性教学中,可以让学生探究怎么样找一个数的因数和倍数,在板书要讲究一个格式与对称性,这样在对学生发现倍数与因数个数的有限与无限的对比,再就是发现一个数的因数的最小因数是1,最大因数是它本身。一个数的倍数的最小的倍数是它本身,而没有最大的倍数。这些都是上课时应该要注意的细节,这对于学生良好的学习惯的培养也是很重要的
新课标实施的过程是一个不断学习、探究、研究和提高的过程,在这个过程中,需要我们认真反思、独立思考、交流探讨,学习研究,与学生平等对话,在实践和探索中不断前进。
因数和倍数教学反思2
简单的内容中蕴藏着复杂的关系,由于新教材把“整除”的概念去掉,再也不提谁被谁整除,而改成借助整除模式na=b,直接引出因数和倍数的概念,这部分内容显得比较容易了,学生在学因数时,对于求一个数的因数,及理解一个数的因数最小是1,最大因数是它本身,及一个数的因数的个数是有限的,感觉很清楚,明白。在学倍数时,对求一个数的倍数及理解一个数的倍数中最小的是它本身,没有最大的倍数也认为容易简单,但有关因数、倍数的综合练习不少学生开始犹豫、混淆。如判断一个数的因数的个数是无限的,不少学生判断为对。练习中:18是的倍数,个别学生选择了18、36、54……。针对这种情况,我调整了练习,组织学生研究了以下几个问题:
1、写出12的因数和倍数,写出16的因数和倍数。
2、观察比较,会打消列问题:一个数的因数和它本身的关系,
3、为什么一个数的因数的.个数是有限的?最小是1,最大是它本身,也就是1和它本身之间的整数。为什么一个数的倍数的个数是无限的?最小是它本身,没有最大的。
通过对这几个问题的讨论,多数学生较好的区分了一个数的因数和倍数
因数和倍数教学反思3
一、让学生在反思中继续“探究”
《数学新课程标准》指出,每个学生都有分析、解决问题和创造的潜能,都有一种与生俱来的把自己当成探索者、研究者、发现者的本能。在课堂教学中,教师给学生以足够的时间和空间,让学生自己去反思,去探究,去发现,对于提升学生的思维能力,激发学生的学习情感,活化学生对知识的理解,起着重要的作用。
例如:在教学什么样的分数能化成有限小数、什么样的分数不能化成有限小数这一内容时,学生很难想到把分母去分解质因数,去寻找规律。我把一组分数抛给学生,让他们根据所学过的知识先把这些分数化成小数,这时学生发现这些分数有的可化成有限小数,有的不能化成有限小数,这是为什么呢?学生带着这个问题反思、回顾:在学习小数化分数时,其实小数就是分母是10、100、1000…的分数。分母是10、100、1000…的分数,都能化成有限小数。学习通过观察比较发现,能化成有限小数的这些分数它们的分子、分母同时乘以一个相同数,都可以化成分母是10、100、1000…的分数;接着学生进一步探究:怎样看一个分数可不可以化成有限小数呢?学生自然而然地观察分数的分母,发现分母的质因数中只含有2和5,这样的分数可以化成有限小数。接着老师故设骗局,3/15这个分数能化成有限小数吗?学生脱口而出:“不能”。老师用疑问的口气问:“真的不能?”这时有的学生发现上当了,3/15其实是1/5。所以它能化成有限小数。反思引导学生继续探究刚才上当受骗的过程,总结(得出)判断一个分数能不能化成有限小数不仅要看分母的质因数中只含有2和5,还要看这个分数是不是最简分数。
在这次探究过程中,教师没有简单的告诉学生怎样去做,而是引导学生运用质疑、反思、比较等数学思维方法,通过知识的前后联系,逐步转化、归纳、整理,反思思路的成功点(发现分数能否化成有限小数的规律),反思思路的失败点(非最简分数不能直接判断能否化成有限小数),自然生成结果。学生在这次探究过程中不仅知道什么样的分数可化成有限小数,还体验理解了为什么分母中含有质因数2、5的分数可化成有限小数的道理。他们充当了一次发现者、探究者,体验了成功的快乐。
二、让学生在反思中“感悟”
新课标指出:学生的数学学习过程是一个自主构建自己对数学知识的理解过程。他们带着自己原有的知识背景和活动经验走进学习活动,并且通过独立思考、与他人交流、自主反思等学习方式,逐步积累对数学知识和数学思想方法的人性化感悟,从而自然的构建新的知识结构。
例如:在教学两个数的最小公倍数一课结束时,我引导学生自我总结、自己反思、相互交流这一堂课的学习结果。这节课的重点是什么?还有什么不懂的地方?这节课的知识和以前学过的哪些知识有联系?这时学生甲突然站起来说:“老师,我有个想法,求两个数的最小公倍数,就是求两个数公倍数中最小的一个,我想只要用大数翻倍法来求”。“什么是大数翻倍法呢?”“就是用其中的较大数分别乘以2、3、4等,找它的倍数,然后判断这个倍数是不是刚好等于较小数的倍数,如果是,那么它就是这两个数的最小公倍数。如找9和12的最小公倍数,只要用较大数12去翻倍,扩大3倍是36,36刚好就是它们的最小公倍数。这种方法较简便” 。学生随即兴奋起来,都试着用这种方法求最小公倍数。这时学生乙站起来说:“老师我发现,求两个数的最大公约数,只要用小数缩倍法,也就是用其中的较小数去缩小一定的倍数,然后判断这个数是不是刚好也是较大数的约数。”学生有“大数翻倍法”求最小公倍数的经验,很快就理解了“小数缩倍法”求最大公约数的.方法。这时学生丙站起来发表意见:“老师,这种方法对数字比较大的求两个数的最小公倍数、最大公约数不够方便,我觉得还是用短除法较好。”
短短的几分钟时间,教师引导学生自己反思整理所学的知识,发现用大数翻倍法求两个数的最小公倍数,小数缩倍法求两个数的最大公约数,并且通过比较发现了它的优缺点,令人惊喜不已。这种反思中的感悟让人兴奋。真是不可预约的精彩。正如叶澜教授所说的:“课堂是向未知方向挺进的旅程,随时可能发现意外的通道和美丽的图案,而不是一切都必须遵循固定线路而没有激情的行程。”在此过程中,应该说感悟起着重要的引领作用。
三、让学生在反思中“创新”
新课标强调课堂教学的互动性,目的在于以思维信息的相互刺激和激发,达到思维的扩散和互补作用。教师要善于设置这种情景,让学生的数学知识通过自身的“再创造”,纳入其认知结构。由于不同学生在学习时思考的角度、认识方式上存在差异,他们发现问题、解决问题的方法也不同,所以我们在课堂教学中,应鼓励他们从不同的角度、不同的途径来思考和解决问题,并且适时地进行反思。这样可以拓展学生的思维,在更深的层次上认识所学的内容,更可以了解不同的学生对同一问题的不同看法和解决问题的不同策略。这样学生才学得灵活,触类旁通。
因数和倍数教学反思4
因区领导要来调研,我们四年级几位数学老师经商量决定,都上《倍数和因数》,都觉得这个内容挺简单的。今天上午第一节课,领导进了我的教室听了我上这一课。上完这课,之前的那个想法就烟消云散了,根本没有想象的那么容易上。下面对自己的课堂做一些反思。
新授的第一个教学环节是认识倍数和因数的意义,原本我想让每位学生准备12个同样大小的小正方形摆长方形的,再一想,都四年级的学生了,不需要操作了,而且,操作这一过程可以节省不少时间,本来这节课就时间很紧。没想到,学生在心中拼一个长方形后,说乘法算式时疙里疙瘩的`,语言表述不流畅,看来是学生缺乏操作体验的缘故吧。至于,认识因数和倍数的意义,并熟练地说,这些学生都掌握很好,只是,不知怎么搞的,我竟然把“能说5是因数,12是因数,60是倍数吗?”这个问题给忘记了,这样,无形中淡化了需强调的“倍数和因数之间的关系”,不出我所料,在下午的反馈中,专家真指出了这一点。
第二环节是探求找一个数的因数的方法,找一个数的因数的方法是本节课的重点,也是难点。根据教材编排的话,应该先找倍数的。我考虑到突出重点、突破难点,我就做了调整,再说,之前,我查阅了好多资料,也有不少老师认为先因数比较合理,因此,我的决定就更加坚定了。在认识了因数和倍数的意义的基础上,我放手让学生自己找36的因数,然后让学生发言交流找的方法,学生真的很努力很拎的清,见有领导听课,竟然发挥出色,表现的相当的真实,也相当的出色,大胆地说出自己的所思所想,学生的回答给人的感觉是那么自然,那么真实,没有一点矫揉造作。在下午的反馈中,专家夸我的课真实、朴实、实在,我想这应归功于我的学生们,是他们的朴实、实在感染了我。然而,我在这个环节设计的问题有点笼统,不到位,导致有几处的问话重复,最终导致本课时间不够,这是我本节课最大的遗憾。第三环节是探求找一个数的倍数的方法,这里,我又一次偷懒,我完全放手让学生来完成,结果学生们真的无师自通,很快就找到了方法,并有了很多发现,相当有价值,学生学习的主动性在这堂课中得到了很好的体现。
由此,让我明白,学生真的不可以小看,他们真的很厉害。但有一点,归功于我,他们的大胆是我在近一年的时间中不断训练的成果。
因数和倍数教学反思5
《倍数和因数》这一节的主要内容是让学生在已有知识和经验的基础上,自主探索和总结找一个数的倍数和因数的方法;用“列举法”研究一个数的倍数的特点和一个数的因数的特点。 这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。 这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:
(一) 操作实践,举例内化,认识倍数和因数
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念,使数与形做到了有机的结合。 这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,降低了难度,效果较好。
(二)自主探究,意义建构,找倍数和因数
一个数的倍数与因数的特征,单凭记忆也不难接受,为防止学生进行“机械学习”,我提出“任何一个不是0的自然数的因数有什么特点,”让学生观察12,20,16,36的因数,思考:一个数的因数的个数是有限的还是无限的?其中最大的`因数是几?最小的呢?让学生的思维有了明确的指向。整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。
(三)抓住学生思维的“最近发展区”,让学生在“独立思考——集体交流——互相讨论”的过程中,促使学生学会有序思考,从而形成基本的技能与方法,既关注了过程,又关注了结果。
找一个数的因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流再让学生寻找,这样就用了很多时间,最后就没有很多的时间去练习,我认为虽然时间用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。
(四)变式拓展,实践应用---—促进智能内化
练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。
(五)重视数学意义的渗透与拓展,力求用数学的本质吸引学生,树立为学生的继续学习和终身发展服务的意识。本节课的设计,我就关注了学生的学习后劲。如列举法的介绍,有序思考的解决问题的策略等。
由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我让学生先进性了预习,做好了一定的准备工作。在第一部分认识因数和倍数这一环节里缩短出示时间,直接出示,,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。
因数和倍数教学反思6
本节课的内容涉及的概念非常多,即抽象又容易混淆,如何使学生更加容易理解这些概念,理清概念之间的相互联系,构建知识之间的网络体系是本节课教学的重难点,同时学会整理知识的方法更是本节课教学的灵魂。
成功之处:
1、构建知识网络体系,理清知识之间的相互联系。在教学中,我首先通过一个联想接龙的游戏调动学生学习的兴趣,让学生利用因数和倍数单元的知识来描述数字2,学生非常容易想到2是最小的质数、2是偶数、2的因数是1和2、2的倍数有2,4,6…、2的倍数特征是个位是0、2、4、6、8的数,通过学生的回答教师及时抓住其中的关键词引出本单元的所有概念:因数、倍数、质数、合数、奇数、偶数、公因数、最大公因数、公倍数、最小公倍数、2的倍数特征、3的倍数特征、5的倍数的特征。如何整理使这些凌乱的概念变得更加简洁、更加有序、更加能体现知识之间的联系呢?通过学生课前的整理发挥小组的合作交流作用,在相互交流中,学生相互学习、相互借鉴,逐渐对这些概念的联系有了更进一步的认识,然后通过选取几名同学的作品进行展评,最后教师和学生共同进行整理和调整,最终来完善知识之间的网络体系。
2、教给学生整理知识的方法。在教学中,是授人以鱼不如授人以渔,作为教师莫过于教给学生必备的学习方法。在这节课的整理复习中,课前我让学生把第二单元的关于因数和倍数的概念进行了汇总,涉及的概念有如下几个:因数、倍数、公因数、公倍数、最大公因数、最小公倍数、质数、合数、奇数、偶数、2的倍数特征、3的倍数特征、5的倍数特征,并提出具体的要求:一是观察分析这些概念,哪些概念之间有着密切的联系;二是根据这些概念之间的紧密联系可以分为几类;三是用你自己喜欢的方法表示出来,可以以数学手抄报的形式来呈现。通过课前的设计,我事先搜集了一些有代表性的作品放在课件中,让同学们进行欣赏,相互取长补短,共同学习,共同进步。课堂中在小组讨论交流的过程后,教师与学生共同对本单元的概念进行了整理和总结,并得出知识网络图。
纵观本节课的设计,就是通过学生的联想,回忆前面学过的知识,并在头脑中构建知识之间的相互联系,从而揭示出这个知识网络图就是思维导图。掌握了这种方法,就可以把数学中的每一个单元进行整理,也可以把每一册知识进行整理,还可以把小学数学的知识进行系统的整理,从而让学生体会到思维导图方法的强大之处,学生在感叹这种方法的魅力同时,并把这种方法推广到其它学科,让学生真正掌握知识整理的方法,并在以后的`单元知识整理中加以运用。
3、在练习中进一步对概念进行有针对性的复习。在练习环节中,我根据这些概念设计了一些相应的练习。目的是以练习促复习,在练习中更好的体会这些概念的具体含义,加深学生对概念的理解和掌握,学生在练习的过程中不仅掌握了知识整理的方法,还深刻地理解了知识的来龙去脉,对每个知识点的概念理解也更加清晰了,起到了复习回顾旧知识的作用。
不足之处:
1、个别学生在展评中不会去评价,只是从设计的美观上去思考,而没有从体现知识之间的联系上去进行说明,在这一点上教师还要加以引导。
2、出现个别学生由于第二单元的知识是在开学初学习的,有些知识点已经遗忘,导致出现连最小的偶数是几都不知道了,因此在学完每个单元后要不间断的进行知识的巩固和练习。
3、由于本节课的知识点过于多,练习的时间有些不足,导致基本的练习时间可以保障,但是需要拓展的知识没有更好的呈现出来。
再教设计:
1、抓住数学知识的本质,美观的整理形式只是一些外在的,并不是重点,注意引导学生从数学的本质去思考问题,排除数学本质以外的东西,去引发思考,从而形成良好的数学思维品质。
2、还要继续深入挖掘数学的思想、灵魂和方法,用以指导课堂教学,让学生掌握以后学习知识的钥匙,学会开启知识的大门。
因数和倍数教学反思7
我在教学时做到了以下几点:
(1)密切联系生活中的数学,帮助学生理解概念间的关系。
今天在教学前,我让学生学说话,就是培养学生对语言的概括能力和对事物间关系的理解能力。于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,又帮助学生理解了倍数因数之间的相互依存关系,从而使学生更深一步的认识倍数与因数的关系,
(2)改动呈现倍数和因数概念的方式。
我改变了例题,用杯子翻动的.次数与杯口朝上的次数之间的关系,列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
(3)根据学生的实际情况,教学找一个数的因数的方法
虽然学生不能有序地找出来,但是基本能全部找到,再此基础上让体会有序找一个数因数的办法学生容易接受,这样的设计由易到难,由浅入深,我觉得能起到巩固新知,发展思维的效果。
(4)设计有趣游戏活动,扩大学生思维的空间,培养学生发散思维的能力。
譬如“找朋友”游戏,答案不唯一,学生思考问题的空间很大,培养了学生的发散思维能力。我手里拿了5、17、38几张数字卡片,让学生判断自己的学号数是哪些数的倍数,是哪些数的因数,,如果学生的学号数是老师出示卡片的倍数或因数就可以站起来。最后问能不能想个办法让所有的学生都站起来。出示地卡片应该是几,找的朋友应该是倍数还是因数?学生面对问题积极思考,享受了数学思维的快乐
因数和倍数教学反思8
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的`知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。
虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:
11÷2=5……1。问:11是2的倍数吗?为什么?因为5×0.8=4,所以5和0.8是4的因数,4是5和0.8的倍数,对吗?为什么?
特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。
因数和倍数教学反思9
XXXX小学 XXXXX
教学内容:教材例1、例2
教学目标
1.知识与技能:让学生初步理解因数和倍数的概念,掌握找因数和倍数的方法。学会用列举法找一个数的因数和倍数。
2.过程与方法:借助直观图,先引导学生观察后列出乘法算式,最后结合乘法算式来理解因数与倍数的概念。
3.情感、态度与价值观:理解因数和倍数的意义能及两者之间相互依存的关系。
教学重点:理解因数和倍数的概念。
教学难点:掌握求一个数的因数和倍数的方法。
教学方法:启发式教学法、指导自主学习法。
教学准备:多媒体。
教学过程:
一、新课导入:
1.出示教材第5页例1。
12÷2=6 9÷5=1.830÷6=5 2÷3=0.6
26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7
(1)观察: 引导观察例1中的算式,你发现了什么?(都是除法算式)
(2)分类:你能把上面的除法算式分类吗?
学生分类后,教师组织学生交流,引导学生根据是否整除分为以下两类
第一类 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二类 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25
2.引入课题。这节课我们就来学习有关数的整除的相关知识。(板书课题:因数和倍数)
二、探索新知:
(一)、明确因数与倍数的意义。(教学例1)
1. 教师引导。教师指出:在整数除法中,如果商是整数而没有余数,我们
就说被除数是除数和商的倍数,除数和商是被除数的因数。例如:12÷2=6,我们说12是2和6的倍数,2和6是12的因数。
2. 学生尝试。
教师让学生说一说第一类的每个算式中,谁是谁的因数?谁是谁的倍数?先同桌互相说一说,再组织全班交流。
3. 深化认识。师:通过刚才的说一说活动,你发现了什么?
引导学生体会:因数和倍数虽是两个不同的概念,但又是相互依存的,二者不能单独存在。我们不能说谁是因数,谁是倍数,而应该说谁是谁的因数,谁是谁的倍数。例如,30÷6=5,30是6和5的倍数,6和5是30的因数。教师强调,并让学生注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括O)。
4. 即时练习。指导学生完成教材第5页“做一做”。
小结:如果a÷b =c(a,b,c均是不为0的自然数),那么a就是b和c的倍数,b和c是a的因数。因数和倍数是相互依存的。
(二)、探索找一个数因数的方法。(教学例2)
1. 出示例2:18的因数有哪几个?
(1) 学生独立思考。
师:根据因数和倍数的意义,想一想18除以哪些整数的.结果是整数。
18÷1=18,l和18是18的因数;18÷2=9, 2和9是18的因数;18÷3=6, 3和6是18的因数。引导学生把18的因数按从小到大的顺序排列,每两个因数之间用逗号隔开,全部写完后用句号结束,即18的因数有:1,2,3,6,9 ,18。
(2)小组合作交流。交流时教师要让学生说明找的方法,引导学生认识:只要想18除以哪些整数的结果是整数,并且要从1开始,一对一对地找,避免遗漏。如果学生还有其他想法,只要合理,教师都应给予肯定。
(3)采用集合图的方法。
教师指出也可用右面的集合图来表示18的全部因数。明确:用图示法表示18的因数时,先画一个椭圆,在椭圆的上面写上“18的因数”,再把18的因数按从小到大的顺序有规律地写在椭圆里,每两个因数之间也用逗号隔开,全部写完后不加句号。
(4)练习。让学生找出30的因数和36的因数,并组织交流。
30的因数有1,2,3,5,6,10,15,30。
36的因数有1,2,3,4,6,9,12,18,36。
三、巩固练习
指导学生完成教材“练习二”第1、6题。学生独立完成全部练习后教师组织学生进行集体证正。
四、课堂小结
师:通过本节课的学习,你有什么收获?
板书设计:
因数和倍数
12÷2=6 12是2和6的倍数
2和6是12的因数 18的因数有1,2,3,6,9,18。
一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
作业:教材第7页“练习二”第2(1)题。
第二单元:因数和倍数
第二课时:因数与倍数(2)
教学内容:教材P6例3及练习二第2(1)、3~8题。
教学目标:
知识与技能:通过学习,使学生能自主探究,找出求一个数的倍数的方法。 过程与方法:结合具体情境,使学生进一步认识自然数之间存在因数和倍数的关系,掌握求一个数的因数和倍数的方法。
情感、态度与价值观:初步学会从数学的角度提出问题、理解问题,并能用所学知识解决问题。在解决问题的过程中,培养学生概括、分析和比较的能力,使学生体会数学知识的内在联系。
教学重点:掌握求一个数的倍数的方法。
教学难点:理解因数和倍数两者之间的关系。
教学方法:启发式教学法、指导自主学习法。
教学准备:多媒体。
教学过程:
一、复习导入
10,28,42的因数有哪些?你是用什么方法找出这些数的因数个数的?一个数的因数中,最大的是几?最小的是几?
二、探索新知
1.探索找倍数的方法。(教学例3)
出示例3:2的倍数有哪些?
师:你会找2的倍数吗?给你们1分钟的时间,看谁写得又对、又快、又多!准备好了吗?开始!
师:时间到,你写了多少个2的倍数?生1:15个。生2:24个。
师:大家都是用的什么方法呢?
生1:我是用乘法口诀,一二得二,二二得四……这样写下去的。
生2:我也是用乘法,用2去乘1、乘2……
师:哪些同学也是用乘法做的?
师:你们都是用2去乘一个数,所得的积就是2的倍数。还有不同的方法吗?
生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。
师:很好!如果给你更长的时间,你能把2的倍数全部写出来吗?
师:为什么?(因为2的倍数有无数个)
师:怎么办?(用省略号)
师:通过交流,你有什么发现?
引导学生初步体会2的倍数的个数是无限的。
追问:你能用集合图表示2的倍数吗?
学生填完后,教师组织学生进行核对。
(4)即时练习。让学生找出3的倍数和5的倍数,并组织交流。学生举例时可能会产生错误,教师要引导学生根据错例进行适时剖析。
4.反思提炼。师:从前面找因数和倍数的过程中,你有什么发现?
先让学生在小组内交流,再组织全班集体交流,通过全班交流,引导学生认识以下三点:
(1)一个数的最小因数是1,最大因数是它本身。
(2)一个数的最小倍数是它本身,没有最大倍数。
(3)一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
三、巩固提升
1.指导学生完成教材第7~8页“练习二”第4、5、6、7题。
学生独立完成全部练习后教师组织学生进行集体证正。
集体订正时,教师着重引导学生认识以下几点:
(1)第4题“15的因数有哪些?”和“15是哪些数的倍数”答案是一样的。
(2)第5题中的第(2)小题是错的,因为一个数的倍数的个数是无限的,第(4)小题也是错的,因为在研究因数和倍数时,我们所说的数指的是自然数,不含小数。
(3)思考题:两数如果都是7(或9)倍数,它们的和也一定是7(或9)的倍数,即如果两数都是n的倍数,它的和也是n的倍数。
2.利用求倍数的方法解决生活中的实际问题
出示:妈妈买来几个西瓜,2个2个地数,正好数完,5个5个地数,也正好数完。这些西瓜最少有多少个?
理解题意,分析解答。
教师提示“2个2个地数,正好数完,说明西瓜的个数是2的倍数,5个5
因数和倍数教学反思10
教学片断:
1、出示12个小正方形。
师:数一数,一共有几个小正方形?如果老师请你把这12个同样的小正方形拼成一个长方形,会拼吗?能不能用一条简单的乘法算式表达出来?
2、指名学生列式,提问其他学生:“你知道他是怎么摆的吗?”要求学生说出每排摆几个,摆了几排。
3、根据学生的回答,适时贴出各种不同摆法:
12×1=12
6×2=12
4×3=12
4、12个同样大小的正方形拼成长方形,能列出三道不同的乘法算式,千万别小看这些乘法算式,咱们今天研究的内容就在这里。以4×3=12为例,12是4的倍数,那12也是(3的倍数),4是12的因数,那3也是(12的因数)。同学们很有迁移的能力,这就是我们今天要研究的倍数和因数。(板书课题)
5、根据另外两道乘法算式,说说谁是谁的倍数,谁是谁的因数。
6、刚才在听的时候发现12×1=12说因数和倍数时有两句特别拗口,是哪两句?
说明:虽然是拗口了点,不过数学上还真是这么回事。12的确是12的因数,12也确实是12的倍数。为了方便,我们在研究倍数和因数时所说的数一般指不是0的'自然数。
7、说一说
(1)根据72÷8=9,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。
(2)从下面的数中任选两个数,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。
3、5、18、20、36
反思:
陶老师从摆小正方形入手,提出“每排摆了几个?”“摆了几排?”这两个问题,引导学生用乘法算式把摆法表示出来,再让学生猜一猜“可能是怎么摆的”,学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。接着结合具体的乘法算式介绍倍数和因数,并让学生根据另外两道乘法算式说说谁是谁的倍数,谁是谁的因数。再通过除法算式让学生说说谁是谁的倍数,谁是谁的因数。最后让学生从五个数中任选两个数说说谁是谁的倍数,谁是谁的因数,这样层层深入,学生对倍数和因数的感受更加深刻。<
因数和倍数教学反思11
本节课是第二单元的第一课时,第二单元的教学内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。还有要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。
今天这节课的教学的倍数和因数是讲述两个数之间的一种相互依存关系,于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。然后我让学生根据情境列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的'概念,并为下面学习如何找一个数的倍数奠定了良好的基础。同时,我还出示了一个除法的算式,让学生来找找倍数和因数的关系,这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
找出一个数的因数要做到不重复和不遗漏,有些学生还不能找全,没有掌握方法,我在今后的教学中还要注意对学困生的辅导。
因数和倍数教学反思12
新教材在引入倍数和因数概念时与以往的老教材有所不同,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我从以下三个方面谈一点教学体会。
一、设疑迁移,点燃学习的火花
良好的开头是成功的一半。我采用“拼拼摆摆”作为谈话进入正题,不仅可以调动学生的学习兴趣,一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。
教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找3的倍数。我设计了尝试练——引出冲突——讨论探究这么一个学习环节。学生带着“又对又好”的要求开始自主练习,学生找倍数的方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕“好”展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,学生发现3的倍数写不完时都面面相觑,左顾右盼。学生通过讨论,认为用省略号表示比较恰当。用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。
二、操作实践,举例内化,认识倍数和因数
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助多媒体出示乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。 这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
三、注重细节,注重学生的习惯培养
学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。
这样的板书帮助学生有序的`思考,形成明晰的解题思路的作用是毋庸质疑的。教师能像教材中那样一头一尾地成对板书因数,这样既不容易写漏,而且学生么随着流程的进行,势必会感受到越往下找,区间越小,需要考虑的数也就越少。当找到两个相邻的自然数时,他们自然就不会再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的
由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我在总结倍数的特征,这一环节里缩短出示时间,直接以3个小问题出示,,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。
因数和倍数教学反思13
一、悬念激趣,触发思维
小学生好奇心强,对未知的事物充满求知欲,这既是引发认知冲突的有利因素,又是触发思维的契机所在。教学中教师要善于挖掘教材,并结合教材特点、教学目标创设故事情境,设置认知悬念,激发学生兴趣,触发数学思维。
如教学苏教版二年级教材“认识厘米”时,为了让学生对“厘米”这一长度单位建立初步的应用意识,我特意在课始播放动画视频,创设“黑猫警长”的故事情境:黑猫警长抓住了盗窃珠宝的老鼠“一只耳”,据它交代,赃物就藏在大树正北方向7个脚长的地方。可是黑猫警长赶到那里,从大树开始向正北方向走了7个脚长,却始终都没有找到赃物所在。大家猜一猜,到底是一只耳在说谎还是警长的问题?学生经过讨论后认为,黑猫警长的7个脚长和一只耳的7个脚长距离并不相等,这是导致问题的直接原因。此时我创设认知冲突:如果生活中人人都用自己的长度标准来测量距离,将会制造很多麻烦。应该怎么办呢?学生认为,要用一个统一的长度来作为测量标准。此时我引入厘米这一长度概念,使课堂教学显得自然而然,水到渠成。
二、新旧结合,启发思维
新知犹如树的新枝,新枝必从旧枝生发而来,教学亦然。教师要善加挖掘,分析学生已有知识结构、经验,并与教材内容紧密结合,根据新旧知识的差异,在新知的生长处制造认知冲突,启发学生的思维。
如在教学苏教版二年级“确定位置”时,我采用“喜羊羊与灰太狼”的情境创设,出示横排竖排的一群羊儿,并做了这样的问题预设:“灰太狼伪装成羊儿,就隐藏在羊群中的第二个。你能找出来吗?”学生认为有两种情况,一种是从左往右数第二只,一种是从右往左数第二只,那么到底怎么才能找出来呢?由此学生得到认知,要想找到灰太狼,就必须要知道两个要素,一个是“第几个”,一个是数的顺序,从而学生得到确定位置的相关经验。那么是否确定了这两个要素就万无一失了呢?接下来我改变了问题的条件,出示小动物的做操方阵,让学生思考:现在灰太狼又伪装成小动物混在队伍中,知道它站在第三个,哪个才是它呢?这样一来,光知道“第几个”和“数的.顺序”显然是不行的,经过思考和自主探究,学生发现除了确定第几个之外,还要确定第几排,但这个第几排的确定也需要一个条件,那就是数的顺序,到底是从前往后数还是从后往前数。
以上教学中,我根据教材内容进行整合设计,从学生已有经验出发,运用两个情境突破学生的旧知,先明确了“第几个”和“怎么数”,但在第二个情境中产生了矛盾,光知道第几个是不行的,还需要知道第几排。由此,学生通过新旧知识的嫁接,主动思考,认识到要知道“两个第几”才能解决问题,思维获得了启迪。
三、对比辨析,深化思维
在数学双基教学中,教师常常利用变式对比和反例进行概念教学。所谓变式,就是指针对知识的本质通过实例的不断变换,让学生明确属性,获得更深入的感知。而反例则是变换本质属性,让学生辨析对比,在认知冲突中巩固和深化认知,有效提升数学思维。
如在教学苏教版二年级“倍的认识”一课时,我创设这样的情境:小猫采到了6朵红色花和3朵黄色花,想一想,红色花和黄色花的数量有什么关系?学生认为红色花是黄色花的2倍。为什么这样呢?我让学生上台摆一摆、分一分,看看为何是2倍的关系。紧接着设置了变式:如果小猫采到8朵红花和4朵黄花,那么红花和黄花有什么数量关系呢?如果小兔采到4朵红花和2朵黄花,那么黄花和红花又是什么数量关系呢?学生由此对倍数关系有了较为直观的表象积累。
为了巩固“倍的认识”,我启发学生思考:为什么花的数量不同,但都是2倍关系呢?学生讨论后认为,上面的花是两份,下面的花是一份,由此得到2倍的关系。此时我呈现反例:如下图所示。
图1图2
图中的椭圆形和三角形的数量关系也是2倍关系吗?为什么?学生从2倍关系的本质入手,认为两者的关系不是2倍关系。在图1中,是把2个三角形看做一份,一个椭圆形看做一份,另外2个椭圆形看做一份;在图2中,是将2个三角形看做一份,3个椭圆形看做一份。
以上教学中,通过反例和对比辨析,学生在认知冲突中学会主动比较共同点,对倍的意义有了深入理解,能够自主建构倍的概念,深化数学思维。
因数和倍数教学反思14
因数和倍数是人教版五年级下册数学第二单元第一课时内容,本节课是一节概念课,学好它为求一个数的因数,倍数以及后期的公因数,公倍数打好坚实的基础。
因数和倍数是揭示的两个整数之间的一种相互依存的`关系,在引入时我先是以复习的形式出示9道整数除法算式,让学生开火车说出答案,紧接着让学生小组合作交流给这些算式分类。学生在按商的结果分类后,我抓住时机引出新课。这节课我的一个最大的特点就是通过举例子让学生更好的理解概念等,抓住重点突破难点,尤其是学生在理解相互依存的关系时。当然这节课还存在着许多不足,首先上课比较着急,生怕时间不够,由于太着急以至于后面要讲到的倍数和因数的特殊情况,相同的两个数既是本身倍数又是本身的因数没有讲解。第二,不能大胆的放手让学生去完成,对学生缺乏信心。第三,教师的言传身教直接影响着学生,教师对学生起榜样示范作用,在板书及书写上,我还需加强。第四练习题的设计不够丰富,比较单一,层次也不明显。再者教学如何判断两个数是否成倍数或因数关系时没给学生足够的思考空间,强拉硬拽式的告诉学生用大数字除以小数字。
总之,教学是一个漫长的过程,需要不断地学习,不断地摸索,然后再实践,只有这样自己才会更快,更好的成长。
因数和倍数教学反思15
《倍数和因数》这一章是人教版五年级下册的内容。由于这一单元概念较多,学生要掌握的知识较多,所以掌握起来较难。我上的这节复习课分以下四部分。
1、先从自然数入手,由自然数的概念让学生总结自然数的个数是无限的,最小的自然数是0,没有最大的自然数。又根据生活实际试着让学生把自然数分成奇数和偶数。点名说出什么数是奇数,什么数是偶数,是根据什么分的`,这样有一种水到渠成的感觉。
2、由偶数都是2的倍数,复习2的倍数的特征,5的倍数的特征,3的倍数的特征。学生边复习老师边板书,由于大家共同协作,很快找出一个数的最小倍数是它本身,没有最大的倍数。然后总结同时能被2、3整除的数就是6的倍数,引出倍数和因数的意义。让学生随便说一个算式,说明谁是谁的倍数,谁是谁的因数”,学生列举乘法或除法算式,准确表达倍数与因数的关系,加深了学生对倍数与因数相互依存关系的理解和认识。
3、随便给出一个数找出它的所有因数,得出一个数最小的因数是1,最大的因数是它身。根据因数的个数把自然数分成质数、合数和1。复习什么是质数,什么是合数。最小的质数是几,最小的合数是几。20以内的质数。为什么1既不是质数也不是合数。这是根据什么分类的呢?任意给出一个数判断是质数还是合数,若是合数让学生分解质因数。先说分解质因数的方法,然后点名学生板演,教师巡视。指出错误。
4、带领学生一起做练习,让学生边做边说思路。这节课比较好的地方是条理清晰、内容全面;练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性、趣味性。
不足之处是我缺乏个性化的语言评价激活学生的情感,以后需多努力。
【因数和倍数教学反思】相关文章:
因数和倍数教学反思10-25
因数和倍数的教学反思02-14
《因数和倍数》教学反思11-17
《倍数和因数》教学反思02-17
《因数和倍数》教学反思11-15
倍数和因数教学反思10-23
因数和倍数的教学反思(15篇)02-22
《倍数和因数》教学反思15篇03-03
因数和倍数教学反思15篇02-21
因数和倍数的教学反思15篇02-21