《分数与除法》教学反思

时间:2022-03-24 12:26:03 教学反思 我要投稿

《分数与除法》教学反思

  作为一位刚到岗的人民教师,我们都希望有一流的课堂教学能力,教学反思能很好的记录下我们的课堂经验,那么问题来了,教学反思应该怎么写?下面是小编帮大家整理的《分数与除法》教学反思,仅供参考,欢迎大家阅读。

《分数与除法》教学反思

《分数与除法》教学反思1

  今天的教学与分数意义的学习在孩子们头脑中产生了强烈的矛盾冲突。前几天的分数都表示谁占谁的几分之几(即分率),可今天求的却是具体数量。特别是例2,虽然运用学具让所有学生参与到知识的探索过程中,但仍旧感觉推进艰难。学生困惑点主要在以下两方面:

  1、为什么把3块月饼看作单位“1”,平均分成4份,取其中1份不是1/4?

  2、通过操作,结果明明是将单位“1”平均分成12块,取出其中的3块,为什么不能用3/12块表示呢?

  针对上述两个问题,我在教学中主要采取了以下一些策略:

  1、复习环节巧铺垫。

  在复习导入中增加一道用分数表示阴影部分的练习。其中一幅图是圆的3/4,另一幅图是圆的`3/12。这样,当学生困惑于例题3/4块和3/12块结果时,就能通过直观图,前后呼应,使学生豁然开朗。

  2、审题过程藏玄机。

  在教学例2请学生读题后,首先请学生思考“3块月饼4人平均分,每人能得到一整块月饼吗?”然后用语言暗示“每人分不到一块月饼,那到底能分得一块月饼的几分之几呢?请同学们用圆形纸片代替月饼,实际动手分一分,看看分得多少块?”有了每人分不到一块月饼的提示,又有了“到底能分得一块月饼的几分之几”的暗示,学生探索的落脚点定位到了以一块月饼为单位“1”,且初步理解了问题是求数量“块”而非部分与整体之间的关系。

  通过上述改进措施,学生理解3/4相对容易一些。

《分数与除法》教学反思2

  理解与掌握分数与除法的关系及其应用。不但可以加深对分数意义的理解,而且为后面学习假分数,带分数,分数的基本性质以及比,百分数打下基础。所以,分数与除法的关系及应用在整个教材中起到了承上启下的重要作用。执教教师能从整体上把我教材,激励学生积极参与教学活动:问题让学生自己解决;方法让学生自己探索;规律让学生自己发现;知识让学生自己获得;课堂上给了学生充足的思考时间和活动空间,同时学生有了表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,是学生独立地发现并应用了“分数与除法的关系”,发展了学生的思维能力,教学效果显著。

  新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究,交流合作”特征的多样化的`学习方式,从而促进学生知识,技能,情感,态度和价值观的整体发展。因此,教学学习活动应该是一个生动活泼的,主动的,富有个性的过程,教学的教与学的方式,应该是一个充满生命力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即一块饼的,3块饼的,通过这一过程,学生充分理解了“3÷4=”的算理。

  探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现教学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,教师让学生充分动手分圆片,让他们在自己的尝试,探究,思考中,不断产生问题,解决问题,在生成新的问题,给学生留足了操作的空间,因此学生对分数与除法的关系理解得比较透彻。

《分数与除法》教学反思3

  “数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”。分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。从以上的角度分析,彭老师的这节课具有以下两大优点:

  1、通过实际操作感悟新知识

  新课程标准强调要让学生在现实的`情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了3÷4=的算理。

  2、在问题不断地解决与生成中探索新知识

  探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。

  总之,在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。

  建议:

  1、在总结了分数与除法的关系后,最好让学生说清楚分数与除法是否完全相同,然后利用表格说清楚它们之间的相同与不同的地方。从而让学生体会分子、分母、分数线只相当于被除数、除数、除号,不是等于。

  2、为了语言表达清楚,学生听得明白,建议把3块饼的“块”改为“个”,平均分成的每一份就说“块”。这样听起来比较清晰。

《分数与除法》教学反思4

  蒲场镇儒溪小学:江娓 《分数与除法》这一节对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。本节课的教学设计,让学生在现实的情境中体验和理解数学,“学生是教学活动的主体”,而“动手实践、自主探索与合作交流是学生学习数学的重要方法”。

  开课前,,我利用用学生都了解的《西游记》作为切入点,以八戒找食物为主线提出三个难易不同的问题,让学生去帮助八戒解决怎样把8个桃、4个梨、1个西瓜平均分给4个人的数学问题,每人分到多少个这样的.一个简单问题。探索一个物体平均分成若干份,求每份是多少,使学生比较容易建立分数意义与除法意义之间的联系,从而体会分数与除法之间的关系,并为下面的探究铺路搭桥。

  教学中,我组织学生动手操作探究解决例题2(类比题)“把3个饼平均分给4个人,每个人分得多少个?”先让学生试着猜一猜,培养学生的数感,让学生做到心中有数,渗透数学研究的思想方法。然后利用手里的学具分分看,课前,我给每组都准备了3个同样大小的圆形卡片。课中,让学生通过看一看、剪一剪、分一分,探究知识的同时,培养学生的动手能力。开放的让学生用自己喜欢的方式来验证自己的想法,并为学生提供充分交流与

  展示的空间与时间,尊重学生的个性发展。当得出结论:“无论用那种方法,我们都能得到把3张饼平均分给4人,每人得到的就是3/4张饼。”探究归纳分数与除法的关系。所以在这个教学环节,我大胆地放手让学生同桌讨论,小组合作学习。开放的情景和问题,学生往往会有更宽广的视野和活跃的思维。

  这样的问题情境激发学生积极思考,在小组合作中,给予学生充足的时间与空间,让每个学生都能独立思考,与人交流,动手操作。整个教学过程注重学生参与的主动性,在互相启发的学习活动中,使学生逐步掌握数学的思想方法,受到数学思维的训练,获得知识,发展能力。

  本节课基本完成了目标,数学课堂有着千变万化的因素,要上好一堂优秀的数学课却非易事。虽然学生对分数与除法的联系学生理解了,但是它们之间的区别学生好像还很朦胧。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。学生的学习兴趣还没有完全调动起来等,总之这节课的不足之处还有很多,让我认识到自己的不足,并及时改正。

《分数与除法》教学反思5

  分数与除法的关系是在分数的意义后进行教学的,使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。但凡教过分数与除法的关系的老师都知道内容很简单,如果单纯地从形式上去教学它们的关系:一个分数的分子当于除法中的`被除数,分母相当于除数,相信学生一定学得很扎实,但这样一来3÷4=的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:

  1.通过实际操作感悟新知识、

  新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了3÷4=的算理。

  2、在问题不断地解决与生成中探索新知识

  探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。

《分数与除法》教学反思6

  分数与除法是五年级下册第四单元分数意义中的内容,是建立在除法意义的平均分和把一个物体或多个物体看做单位“1”进行平均分概念的基础上进行教学的。这部分知识加深和扩展了学生对分数意义的理解,同时也为后面讲解假分数以及把假分数化成整数或带分数做好准备。

  在本节课的教学中,我首先选择恰当的切入点,从解决简单问题入手,提出了这样几个问题:把6张饼平均分给3个人,每人分到几张饼?把一张饼平均分给2个人,每人分到几张饼?把1张饼平均分给3个人,每人分到几张饼?在此基础上,观察三个算式和得数,得出结论:一张饼的1/3是1/3张饼。为促进学生主动沟通知识间的内在联系做了一个思路引领。

  其次充分展现学生的思维过程,以加深学生对知识的理解。我在这里提出了新的问题:如果把3张饼平均分给4位同学,每人分到几张饼?怎样列式?结果每人分到几张饼呢?请同学们借助手中的学具,分一分、拼一拼,看看到底每人分到多少张饼呢?这一问题的解决过程,既是本节课教学的重点,又是学生理解的难点。我让学生亲自动手分一分,拼一拼,并让学生展示分的过程和分得的结果是怎样的,学生出现了不同的分法和结果。我在这里引导学生展开讨论,使学生在实际操作交流中,对知识的'内在联系有了更好的理解。

  本节课的教学中,我围绕分饼的方法展开交流,引发学生不断的数学思考,促进学生在动手操作,主动思考中沟通知识间的内在联系,帮助学生不断扩展已有的知识结构,加强了思维深刻性的培养。在教学新课时,学生说的很好,我应该最后再引导学生完整的说出:每人分到这张饼的1/4,3张饼的1/4就是3/4张饼,即3张饼的1/4展开后就是一张饼的3/4。而我在课前的预设中是有这个环节的,结果在教学中,把这个环节落下了。

  在今后的教学质量中,应尽量把数学课上的更扎实有效,使学生的数学思维能力和学习能力得到更好的发展和提高。

《分数与除法》教学反思7

  分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

  1.以解决问题入手,感受分数的价值。

  从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的'角度来设计的。

  2.分数意义的拓展与除法之间关系的理解同步。

  当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

  反思这节课,在这一过程中,我在教学之前认为分数与除法的关系很简单,而在实际教学时发现并不是一个简单的问题。因此我把重点放在例2上:3÷4=()(块)的探究上。学生在理解的时候,还真的很难得到3÷4=()(块),开始都猜想是,然后通过动手小组去操作,经历验证猜想的过程中,学生汇报中出现了是1/4,因为他们认为是把3饼看作单位“1”平均分成4份。每人就得了1/4……说明学生在操作中在思考了,同时也暴露出了学生在分数意义的理解上出了问题,问题在哪里呢?出在把谁看作单位“1”上,问题在对分数意义的理解上,这是难点。学生认为简单,实际上不简单,因此我们的教学必须重视学生的说理和交流。把重点放在3÷4=()(块)上,我借助的是学生的动手操作,采取让学生之间的互相交流和辩论解决了学生认识上的难点。把重点放在3÷4=()(块)上,需要注意的是:在指导过程中,不能讲得太多,讲得过多,学生会越来越不清楚。

  从分数与除法的关系这个内容的教学我发现:学生的例子太少,没有说服力,为了学生今后学习中遇到问题上该如何解决,我们必须在常规的教学中去渗透数学思想方法,授人以 “渔”。于是教学中,在学生得到了3÷4=()(块)后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。根据学生不同的认知情况,安排了适当的模仿练习,感性体验数学活动,促进学生对结果的深层次的理解。

《分数与除法》教学反思8

  分数与除法的关系是在学习了分数的意义后进行的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以沟通分数与除法的联系至关重要。

  一、成功之处

  1.恰当铺垫,有利于分散难点。

  为有效地分散算理,教学中设置的教学情境,以比较简单的题目形式分层呈现,比如:将3块月饼平均分给4个小朋友,每个小朋友得多少块?将1块月饼平均分给3个小朋友,每个小朋友得多少块?……在该环节中,教师可借助实物操作着重引导学生理解:把1块月饼平均分成4份,其中的每一份都是这块月饼的1/4,也都是1/4块,通过结合生活实际的一些数据较小题目的出示作为铺垫,可以帮助学生更好地认识分数与除法的联系。

  2.实际操作,感悟新知识。

  《数学课程标准》指出:“数学教学,要让学生亲身经历数学知识的形成过程。”也就是经历一个丰富、生动的思维过程,在教学中,在一块月饼平均分给四个小朋友,求每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。在解决把3张饼平均分给4个小朋友,每个小朋友分得多少的.问题时,由于问题难度增加了,所以我就请他们四人一小组想办法,进行动手操作尝试,并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义:即每人分得1张饼的四分之三,也可以说是3张饼的四分之一。通过这样两次动手操作的过程,学生充分理解算理,他们在自己的尝试、探究、猜想、思考中,不断解决问题、再生成新的问题,为探究分数与除法的关系搭建了沟通的桥梁。

  3.鼓励发现,探索分数与除法的关系。

  探索是学生亲自经历和体验的学习过程,引导学生观察1÷3=1/3?? 3÷4=3/4这两道算式,鼓励他们想一想:①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?②用分数表示商时,除式里的被除数,除数分别是分数里的什么?③分数与除法的关系是怎样的?以问题为主线,一步一步地引导学生归纳出了分数的意义,理解了分母、分子的含义。

  二、改进之处

  1.分数与除法的区别没有理解透彻。

  虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别没有学生自己总结出来,剩下的时间比较仓促,只能由我帮助引导学生总结出两者的区别,即:除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。这部分内容下一节课应予以强调。

  2.小组操作参差不齐。

  在小组合作进行把3块饼平均分给4个人时,有的小组合作的效果较好,但有的小组并没有领会3/4块是怎么得到的,3个1/4块是3/4块,3块的1/4是3/4块,分数的这两种意义个别学生没有理解透彻。

  针对本课的不足之处,下一节课将进一步弥补,期待学生将分数与除法的联系和区别掌握牢固。

《分数与除法》教学反思9

  本节课是在学生已经建立起除法意义的平均分和把一个物体或多个物体看作单位“1”进行平均分概念的基本上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。 在这节课的教学中,做得比较好的方面是:1.教师能站在一个比较高的角度恰当地选择了教学的切入点,教师从解决简单的问题入手,把6块饼平均分给2人,每人分得几块?把1块饼平均分给2人,每人分得几块?把1个蛋糕平均分给3个人,每人分得多少个?在此基础上引导学生观察3个算式和3个得数,学生很快得出一个结论,两数相除,商可以是整数、小数和分数。在这教师还注意制作课件,说明一块饼的1/3也就是1/3张饼,为促进学生主动沟通知识间的内在联系作了一个很好的思路引领。2.在解决把3块月饼平均分给4个人,每人分的几块?这一重难点问题时,让学生借助学具动手分一分,并让学生充分展示和交流分的过程和分得的结果,充分展示了学生思维过程,加深了学生对知识的理解。

  3、注意引发学生的数学思考,促进学生主动沟通了知识间的内在联系,注重数学思维深刻性的培养。在课堂上让学生经历了操作、发现、迁移、归纳,使学生水到渠成的发现、归纳分数与除法的关系,在课堂上实现了师生的交往互动。 我觉得有以下几方面值得我去思考:

  一、在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的`及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

  二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异,在教学"把3张饼平均分给4个同学,每个同学应分多少张饼?"时,我让学生借助圆形纸片在小组内合作进行分一分,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

  三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

  四、关于“分母不能为0”这个环节,教学中如果能放缓脚步,通过分析一个分数的实际意义,引导学生理解分数中的分母表示平均分的分数,或是启发学生发现在除法中除数不能为0,除数相当于分数中的分母,所以分母不能为0。这样的处理使学生借助已有的知识解决新的问题,效果会更好。

《分数与除法》教学反思10

  《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。

  在这节课的教学中,我觉得有以下几方面值得我去思考:

  一,在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

  二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。但说的不是很明白。特别是3个饼合在一起来分学生,每一份是多少快,学生不太理解,在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

  三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的.小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

  四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。

  以上几方面就是我对这节课的一点思考,也是我在以后的教育教学中应该注意的几个方面,相信自己以后在这几方面会做得更好。

《分数与除法》教学反思11

  教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题÷4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个"为什么"简直就是废话中的废话。整个班级躁动不安,是清明假期临的缘故吧。看着即将发怒的老师,孩子们安静下一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。"授人以鱼,不如授人以渔。"我接着说,"大家都知道除以4得四分之三,那除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?"果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。

  一、通过操作,感悟算理。

  我叫学生拿出前准备好的三个圆,让学生在小组内用自己喜欢的方式验证对除以4这一结果的猜想。孩子们或静下心仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法(一):把三个圆一个一个分,每次得四分之一,分次,就得个四分之一,就是四分之三张饼。方法(二):把三个圆叠起,平均分成4份,得到张饼的四分之一,也是个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证÷4用分数四分之三表示结果。还有学生想出了方法(三):除以4得07,07化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。

  二、再次说理,悟出关系。

  在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把块饼平均分给个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。

  通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。

  三、对比练习,深化知识。

  出示:

  把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。

  把三块饼平均分给7个小朋友,每人分得几分之几块。

  让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位"1"平均分成几份,每份就是单位"1"的几分之一,是份数与单位"1"的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的`份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。

  在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以"渔"永远比授生以"鱼"的重要的多!

《分数与除法》教学反思12

  本节课的教学着重让学生在以下几方面理解:

  1、分数与除法之间有着密切的联系,但分数不等同于除法,二者之间有一定的区别:除法是一种运算,分数是一个数。

  2、一个分数,不但可以从分数的意义上理解,也可以从分数...

  本节课的教学着重让学生在以下几方面理解:

  1、分数与除法之间有着密切的联系,但分数不等同于除法,二者之间有一定的区别:除法是一种运算,分数是一个数。

  2、一个分数,不但可以从分数的`意义上理解,也可以从分数与除法的关系上理解。如:四分之三可以理解为把单位“1”平均分成4份,表示其中的3份的数;也可以理解为把3平均分成4份,表示这样一份的数。

  3、为了让学生更好的记忆分数与除法的关系,我还设计了顺口溜:

  分数、除法关系妙,记忆方法有诀窍。

  两数相除分数表, 弄清位置很重要。

  除号相当分数线,分子、分母两数担。

  位置顺序不能调,相互关系要记牢。

《分数与除法》教学反思13

  “分数和除法的关系”主要引导学生探索并理解分数与除法的关系,教材呈现的直观的情境图:把3块饼平均分给4个小朋友,每人分得多少块?分饼的情境,对于五年级的学生来说相当熟悉,不但生活中有,以前的课本知识中也有,生活、学习的经验体会到和以前分饼的问题有相同之处,都是用饼分给一些小朋友,每个小朋友可以分得多少个饼的问题,算式是3÷4=?,有直观的情境图帮助学生思考,有学生知道这个算式的结果是3/4块。借机可以让全体学生直观地体会结果不满1时可以用分数表示,直观帮助学生初步体会分数与除法的关系。五年级数学下册分数和除法教学反思

  验证“3÷4是否是3/4块,也就是每人分得是3/4块饼吗”是这堂课的难点,操作能帮助学生理解。方法一是一个饼一个饼地分,将第一个饼平均分成4份,每个小朋友分得其中的一份,也就是分得1/4个饼,用同样的方法分别将第二、第三个饼也分,每个小朋友还是分得1/4块饼,三次一共分得3个1/4块饼,合起来是3/4块饼;方法二是三个饼叠在一起分,平均分成4份,每个小朋友分得其中的一份,也就是每人分得3块的1/4,有3个1/4块饼,即3/4块。操作、图像都是直观的不同手段和形式,同样可以帮助学生理解“3/4块饼”得到的过程,形成丰富、准确的表象。

  观察等式3÷4=3/4、3÷5=3/5可以发现分数和除法之间的关系,有了板书的直观支撑,学生很容易知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数的分数线;有了板书的直观支撑,学生很容易知道除法与分数的区别,除法是一种四则运算之一,而分数是一种数,相对于自然数、小数而言的另外一种形式的数。在理解、掌握分数与除法关系的.基础上,通过练习让学生进一步沟通分数与除法之间的关系,形成相应的技能。如,先将被除数改写成分子,后将除数改写成分母来的比较简单,且不容易出错等等。板书是可以一直留在学生视线中的直观媒体,便于学生反复观察、比较,可以帮助学生获得相应的结论。

  情境图、动手操作、直观演示、板书这些形式和手段,可以帮助学生直观地理解知识和运用知识。“试一试”是让学生把低级单位的单名数换算成高级单位的单名数,题目:7分米=( )/ ( )米 23分=( )/ ( )。学生交流中有两种思路,一是运用分数的意义来解决问题的,把1米看做单位“1”平均分成10份,7分米是这样的7份,所以7分米=7/ 10米;二是低级单位换算成五年级数学下册分数和除法教学反思高级单位时,用除以进率的方法解决问题,即7÷10=7/10(米)。运用分数的意义和规律准确完成单位之间的换算,学生在思考时是离不开直观的支撑的。直观是学生理解的基础,直观是沟通知识的桥梁。

《分数与除法》教学反思14

  本节课重点是理解分数与除法的关系、带分数与假分数互化。难点还是理解除法与分数的关系,虽然在复习旧知,如:把6米的绳子平均分成两段,每段长多少米?简简单单的复习为探索新知做铺垫,可课件呈现课件呈现把一块蛋糕平均分给2个小朋友,每人能得到几块蛋糕?学生把刚才复习的除法计算的知识进行迁移,很容易能用算式1÷2来计算,有的学生会直接用二分之一表示,我引导:既然都是正确,就说明可以用等于号了。

  接着从课本的例子:如果有7块蛋糕,要分给3个小朋友,每个小朋友又能得到多少呢?学生很快就能列式表示,并用分数表示结果。然后让学生观察两个式子,看看分数与除法有什么关系?先让学生同组交流讨论,再全班反馈交流,学生能说出分数和除法有关系,就是说不出所以然,我只好问:这个分子和除法的什么好像相当?总算是把这些关系理清,可学生提出疑问:“能不能说分子等于被除数?”我说不行,只能用“相当”更恰当。

  对于假分数化带分数,我从上次作业的一个图形引导,二又八分之六等于八分之二十二,完整一个单位“1”有八份,那么2个单位就是十六加上不完整的6就是22,看来分子除以分母后的.商是整数部分,余数是新的分子,反过来是带分数化假分数,可以引导学生从被除数=除数×商+余数,这样学生就很明朗。

  特别强调的是:在带分数和假分数互化时,一定要演算,培养演算的习惯是学生学习中不可缺少的。

  本节课遗憾的是讲得太多,学生思考的时间少了,虽然学生认真听讲,但不利于学生的探究能力,值得注意。

《分数与除法》教学反思15

  分数与除法的关系是在学生学习了分数的意义后进行教学的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。

  这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以,分数与除法的关系在整个教材中起着承上启下的重要作用。如果单纯地从形式上去教学分数与除法间的关系,学生能学得很扎实,但这样一来计算3÷4=3/4的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:

  1.通过实际操作感悟新知识

  在教学中,我设计了这样的教学情境,把一张饼平均分给四个小朋友,每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。接着出示要把3张饼平均分给4个小朋友,每个小朋友分得多少?四人一小组想办法把3张圆形纸片平均分给4个小朋友。并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义,即每人分得1张饼的四分之三,也可以说是3张饼的四分之一,通过这一过程,学生充分理解了3÷4=3/4的算理。

  2、使学生清楚为什么要用分数来表示除法算式的结果

  在学生理解了分数与除法的关系之后,我有意识的设计了这样几道练习题。1÷3= 8÷9= 2÷6= 让学生把计算结果写在练习本上,比比看谁先算完。结果有的学生一两秒钟就举起了手,而有的学生费了很长时间才写出了计算结果。汇报之后,引导学生思考:1÷3=0.333……与1÷3=1/3 8÷9= 0.88……与8÷9= 8/9有什么区别?学生最直接的回答是:用循环小数表示商计算太麻烦,没有用分数表示快捷、简便。这时告诉学生,以后计算两个整数 相除的商,除不尽时或商里有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。

  3、借机引申,为后续学习做好铺垫

  第一次向学生介绍分率与数量的区别。如①“把一张饼平均分成4份,每份分得这张饼的几分之几?每份分得多少张饼?”② "把2米长的`绳子平均分成7段,每段长是这根绳子的几分之几? 每段长多少米 "③"把4千克盐平均分成5份,每份重量是盐的总数的几分之几 /每份重多少千克?先让学生明白这三道题第一问求的都是“分率”,分率没有单位,都是把总数看做单位“1”,把单位1平均分成若干份,求其中的一份是总数的几分之一,都是用单位“1”除以平均分的份数得到,如前三道题的分率分别是1÷4=1/4 1÷7=1/7 1÷5=1/5。而第二问都是求每份数量是多少,每份数量是有单位的,都是用总数量除以平均分的份数得到,得数一定带单位名称。前三道题第二问的算法分别是1÷4=1/4(张) 2÷7=2/7 (米)4÷5=4/5(千克)

  此处学生理解了分率和每份数量之后,为后面学习分数、百分数应用题做了良好的铺垫作用。

  4、让学生自主建构新知识

  当学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,引导学生把数字换成它们的名称:被除数÷除数=被除数/除数。这时候,再让学生在练习本上用字母a、b表示除法与分数的关系。多数学生写下:a÷b=a/b,老师拿一名稍差学生的板书出来,故意表扬这位同学。正表扬却突然转身给这名学生作业后面一个大叉号。正当同学们都诧异的时候?问为什么错了?这时几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,追问:“为什么b不能等于0?”。我继续用课堂中的例题把1张饼平均分给4个人,每人分得这块蛋糕的1/4为例,让学生说说这个分数中的‘4’表示什么?”“如果把‘4’换成‘0’呢?”学生恍然大悟:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。在用字母表示分数与除法的关系时----“a÷b=a/b(b≠0)”学生经常会忘记,这里的b不能为0。通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,所以在分数中分母不能为0的道理。这里并不直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。而是通过分析一个分数的实际意义让学生充分理解分数中的分母表示平均分的份数,所以分母不能为“0”的道理。

  本节课的不足之处:虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别没有引导学生总结出来。除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。

【《分数与除法》教学反思】相关文章:

分数除法的教学反思04-12

分数除法教学反思04-22

分数与除法教学反思07-11

《分数与除法》教学反思10-31

《分数除法》教学反思03-13

《分数除法计算》教学反思06-18

分数除法(三)教学反思04-11

《分数除法三》教学反思04-07

分数除法二教学反思03-02