数学运算教学反思

时间:2022-12-23 13:19:21 教学反思 我要投稿
  • 相关推荐

数学运算教学反思

  作为一名人民教师,课堂教学是重要的工作之一,通过教学反思能很快的发现自己的讲课缺点,那么写教学反思需要注意哪些问题呢?下面是小编为大家整理的数学运算教学反思,仅供参考,大家一起来看看吧。

数学运算教学反思

数学运算教学反思1

  本节课,学生已经很熟练的掌握了加法的运算定律,了解并探索加法运算定律的方法,那么为什么不让学生自己结合已经掌握的知识和方法自主探索乘法的交换律和结合律呢?因此在本节课的教学中,我设计了这样几个教学环节:有针对性的复习加法运算定律,为学生学习新知识奠定基础;回顾加法与乘法的关系,沟通新旧知识间的联系;猜测推想,调动学生探究新知识的`欲望;合作交流,自主探索,充分发挥学生学习的自主性,使学生真正经历知识的发现发展的过程,使学生真正的理解知识,同时使学生掌握一定的数学学习方法和必要的活动经验;总结概括,通过教师和学生的总结使学生对乘法交换律和结合律的印象更加清晰、流畅,同时使学生了解课本上的归纳方法,帮助部分学生进一步理清了自己的思维过程;练习应用,通过多种形式,不同层次的练习,使学生巩固知识,发展学生运用知识解决问题的能力;课堂总结,在课堂总结中,我注重引导学生从三个层次进行总结回顾,

  1、数学知识的总结回顾;

  2、数学学习方法和学习技能的总结提炼;

  3、通过让学生谈收获,引导学生从多方面展开自我反思和总结。促进学生的发展和提高。

  在本节课的教学过程中,我充分发挥学生学习的自主性,同时积极做好学生学习的组织者、合作者,发挥好教师的指导作用。积极运用新课标所倡导的自主探索、合作交流等的学习方式,努力给学生提供从事数学学习活动的机会,使学生通过经历知识的发现、发展过程,使学生掌握基本的数学知识和技能,获得必要的数学活动经验,同时使学生获得基本数学思想和方法

数学运算教学反思2

  分数的混合运算是本册的重点、难点,本单元包括分数乘除混合运算;求比一个数多[或少]几分之几是多少的计算;以及已知比一个数多[或少]几分之几是多少,求这个数的计算。

  分数乘除混合运算,主要让学生掌握分数混合运算的计算方法,能正确进行计算,并会做分数乘除的应用题。学生很容易掌握计算,应用题我主要采用让学生找等量关系,先让学生写出等量关系,再把以知条件代到等量关系中,求出数量。这种方法学生容易接受,效果较好。求比一个数多[或少]几分之几是多少的计算,我主要让学生画图的方案。在教学过程中,我保证了学生有充分的.时间自主尝试画图,同时也要对学生的画图结果给予及时的反馈和评价,充分交流后作出正确示范,在画图的基础上,分析数量关系,从而解题。学生的掌握情况不错。已知比一数多[或少]几分之几是多少,求这个数的计算,这对学生来说较困难,是个难点。我采用已下四步:1、让学生找单位“1”。2、根据题意画线段图。3、根据线段图找出与单位“1”的数量关系。4、然后根据关系列出方程或写出算式。

  刚开始觉得学生掌握的不错,每一课用的时间较短,没有进行过多的训练,等到三课上完后,进行综合训练时问题就出来了,学生分不清楚是用乘还是除、是用单位1加还是减等等。我发现主要原因是没有循序渐进,由简到难,步步落实,没有备学生,高估了学生的能力。虽然方法较好,但学生掌握的较差。只有让学生把每一种类型的题目搞懂、分析清楚,再进行混合运算就容易多了。后来我又根据上面的方法和策略,一步一步让学生落实,最后学生才能掌握。

数学运算教学反思3

  在教学“整数乘法运算定律推广到分数乘法”这一课后,我做了深刻的反思:

  首先我不仅注重了情境的导入,提高孩子们的参与热情。

  开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。

  同上我还鼓励学生大胆的'质疑与猜想,激发学生内在的求知动力。在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。

  第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;

  第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人,而且也让我懂得的教是为学服务,要想提高教学质量,关键在课堂!

数学运算教学反思4

  我将本课教学分为两个层次。第一层次有整数乘法运算定律推广到小数乘法引入,通过创设问题,引发学生的认知冲突,进而组织学生猜想:运算定律能否推广到分数乘法。让学生自由地、充分地发表观点后,引导学生自行设计方案来验证猜想。使学生学习数学的过程中真正成为生动活泼的,主动的,富有个性的过程。

  第二个层次为例题教学。从个体的尝试到小组间的交流,再到全班汇报,步步为营,层层递进,始终紧扣“简算时,运用了什么定律?”展开。实践自己探究出的新知,是学生获得了成功的体验,增强了学习数学的自信心;在独立解题后再交流,使小组合作落到实处,也进一步扩充了课堂教学的信息渠道。

  在本节课的教学中,我充分利用知识间的内在联系,向学生提供从事数学活动的机会。让学生通过自主探索,在新手环节,我组织学生猜想,让学生自由地充分地发表自己的观点后,引导学生自行设计方案来验证猜想。在这样的'设计下,学生的思路突破了教材的束缚,是学习数学的过程真正成为了声动活泼的、主动的、富有个性的过程。学生在学习过程中,从个体尝试到小组间交流,再到全班汇报,步步为营,层层递进,获得了成功的体验,增强了学习数学的自信心。

数学运算教学反思5

  数学教学不是一个简单的“告诉”,把内隐在学生口算中的乘法分配律显性化并成为学生的自觉认识,对于学生来说并不是一蹴而就的事,它需要一个过程,这个过程就是要让学生经历“观察——体验——猜想——验证”这样一个循序渐进的探索发现的过程。同时,在这个过程中,也让学生学会运用数学的思维方式去观察、去思考、去探索,获得一些经验和方法,培养进一步学好数学的信心,提升对生活的认识,感受自我生命的价值。由此,我紧紧把住乘法分配律教学的魂,充分挖掘乘法分配律的可探究资源,让学生多次经历有序观察、大胆猜想、小心验证的探究性学习过程。在此基础上,引领学生进行总结、反思、升华,感悟人生哲理。

  教学过程如下: (在比较从生活实践应用中得到的两个等式(40+3)×25、40×25+3×25和(40-3)×25、40×25-3×25 的不同点后)

  师:由此,你能提出什么猜想?

  生:两个数的差与一个数相乘,是否可以用两个数分别与这个数相乘,再把所得的积相减呢?

  师:我们惊喜地看到×××同学在科学的道路上迈出了关键的一步:大胆的提出了这样一个猜想。如果把他的猜想用字母表示出来,该怎样表示?

  生:(a-b)×c、 a×c-b×c

  师:这个猜想能成立吗?怎么办? 师:好!那就让我们举例验证一下,开始。 (学生举例后,请 2~3 名同学上台汇报展示)

  师:由两个数的和与一个数相乘,你还会想到什么?

  生 2:三个数的和与一个数相乘,是否可以用三个数分别与这个数相乘,再把所得的积相加呢?

  生 3:很多个数的和与一个数相乘,是否可以用很多个数分别与这个数相乘,再把所得的积相加呢?

  生 4:如果括号里有加有减,是否可以用这些数分别与这个数相乘,再把所得的积相加相减呢?

  师:同学们提出了各种各样的猜想,让我们带着这些猜想课后继续探讨,相信还会有许多惊人的发现。

  师:在这节课即将结束的时候,让我们一起回顾一下,我们是怎样发现乘法分配律的?

  生:首先对几道简单的口算题进行有序的观察,然后大胆地提出猜想,用举例的方法进行验证,最后得出结论,发现了乘法分配律。

  师:是啊,几道简单的口算题,让我们发现了一个重要的'运算律——乘法分配律。同样,简单的生活现象,也能生发出伟大的发明与发现。(图片配音展示)英国科学家牛顿从苹果落地的生活现象中引发思考,发现了万有引力定律,创立了伟大的经典力学理论体系;美国发明家莱特兄弟,从鸟的飞行中得到启示,发明了飞机,实现了人们翱翔蓝天的梦想。可以这样说,平凡中孕育着伟大。

  师:看了这个短片,你有什么想说的?

  生:我们要学会用心观察。

  生:我们要对生活充满好奇心,因为好奇心是一切发现的基础。

  生:许多伟大的科学发现都源于我们的日常生活,我们做一个生活的有心人。

  师:是啊,只要我们做一个生活的有心人,勤于观察,善于思考,大胆猜想,小心求证,也可能会有许多惊人的发现!让探索成为我们永恒的追求!

  师:通过这节课的学习,你有什么想对老师和同学说的?

  生:世上无难事,只怕有心人。只要我们用心去观察、去思考、去探究,我们就会发现许多没有发现的知识。

  师:这位同学说的太妙了!让我们就以这位同学的至理名言作为本节课的结束语:只要我们用心去观察、去思考、去探究,就会有所收获!让我们共同努力吧! 这样教学,巧妙地把数学教学提升到科学教育、生命教育的层面,让学生感受到数学的神奇魅力,感受到科学探究的巨大价值,感悟人生哲理,培养学生对数学、对科学、对生活、对自我积极的情感、态度和价值观。 因此,我们要以冷静的态度、批判的眼光审视当下的数学教育,研究教材,准确把住数学知识的根,研究学生,从

数学运算教学反思6

  “四则运算”是人教版小学四年级数学下册第一单元的内容,四则运算是贯穿于小学数学教学全部过程。其内容占小学教学知识的主要位置,可见计算能力的培养在数学教学过程中起到举足轻重的作用。我在这一单元的教学中,充分利用教材提供的生活素材,把解决问题与四则混合运算顺序有机结合起来,将探求解题思路与理解运算顺序有机结合起来,让学生在经历解决问题的过程中明确先求什么,用什么方法计算;再求什么,又用什么方法计算;最后求什么,用什么方法计算。感受混合运算顺序的必要性,掌握混合运算顺序。

  这一单元的目标是这样定的:

  1.使学生掌握含有两级运算的运算顺序,正确计算三步式题。

  2.让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两三步计算的方法解决一些实际问题。

  3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

  在教学过程中我主要有以下几点体会:

  1、对四则运算顺序的理解

  通过学习学生基本能记住掌握四则运算的基本顺序,即先括号内,后括号外,先乘除后加减,单一加减或单一乘除要从左到右的顺序计算,学生虽说能记住,但在实际的练习中出现了以下的问题或者说是误解应值得教师注意。

  (1)对“先”字的理解,我发现在很多学生的练习中出现误解现象,他们认为先算的就应该写在前面,如计算12+(13-4)-6就会这样些=9+12-6把先算的括号写在前面,还如12+5×6-15就会这样写=30+12-15,打乱运算的顺序。

  (2)在理解“先乘除,后加减”时误认为要先算乘法后算除法,先算加法后算减法,如计算12÷3×2写成=12÷6=2,计算12-3+6就写成=12-9=3。而实际所谓先乘除后加减是指乘除哪种运算法则在前九先算哪种,加减也是。

  以上两点对“先”字的理解先算出现的误解现象值得教师注意纠正指导。

  2、很多学生在解答如“326与290的差去乘18与24的和,积是多少?”一类的问题时,对“与”、“和”两个字的含义理解出现误解,特别是“和”的含义。在学生的练习中我发现很多学生出现错误,不理解其意思导致出现错误。“和”在题目中是表示连接两个数字的关系的连词使用还是表示运算法则中的加法来使用,老师一定要给学生将清,引导学生区别,正确的理解含义并写出正确的.四则余混合算式。

  3、让学生用数学语言把算式说出来。(如x除以a减b的差。)这也为学生对文字题的理解打下了基础。

  4、遇到学生错误的典型例题时,进行错误的辨析,让学生知其所以然。使学生在经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两三步计算的方法解决一些实际问题。

  从学生的作业及单元检测情况来看,还是有部分学生对运算顺序的掌握不过关,主要体现在:

  ①顺序出错;②抄题时抄错;③计算发生不必要的错。

  结合学生出现的问题,我要求学生在计算过程中做到“一看(认真看题)、二画(运算顺序)、三算(认真计算)、四查(检查计算结果)”来帮助学生提高计算效率,同时养成自觉检查作业的良好习惯。另外,坚持每天对学生进行3-5题强化训练,力争全面提高学生计算能力。教学生明白综合算式应先算什么,再算什么,应更形象化!把抽象的、明理的东西搞得的尽可能的形象,从而更接近于小学生的实际。更容易接受。如简单的“画顺序线”,即可增强形象感。

数学运算教学反思7

  今天我和学生一起学习了有理数的加法。课堂环节基本上是这样的:

  一、复习导入

  提问有理数的加法法则并进行了相应练习。发现同学们这部分掌握的非常好,及时鼓励表扬的学生。那么我们这一节课一起看一下加法的运算律在有理数范围内是否也适应呢?我们一起探讨一下:同桌之间进行交流

  (1)(-8)+(-9)(-9)+(-8)

  (2)4+(-7)(-7)+4

  (3)6+(-2)(-2)+6

  (4)[2+(-3)]+(-8)2+[(-3)+(-8)]

  (5)10+[(-10)+(-5)][10+(-10)]+(-5)

  二、组内探究合作交流

  1有理数的加法的运算律

  2紧跟跟踪练习:要求学生独立完成,并找4号同学去黑板练习,并进行讲解点拨总结规律方法。

  1.12+(-8)+11+(-2)+(-12)

  2.6.35+(-0.6)+3.25+(-5.4)

  3.1+(-2)+3+(-4)+…+20xx+(-20xx)

  三、课堂小结

  谈谈本节课的收获。

  四、当堂检测

  要求学生独立完成,并找同学核对答案。

  【达标检测】试一试你能行!

  1.(-28)+29=29+(-28)利用的'是加法的________________.

  2.(-3)+7+(-4)+3=[(-3)+3]+7+(-4)利用的是________________.

  3.若a,b互为相反数,且c的绝对值是1,则c-a-b的值为( ).

  4.计算:

  (1)(-7)+(-6.5)+(-3)+6.5;

  (2)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;

  (3)(-18.65)+(-6.15)+18.15+6.15.

  五、课堂评价:学科班长评出本节课的优胜小组及个人。

  教学反思:本节课的重点是有理数加法的运算律,难点是:灵活运用加法运算律进行简化运算。课堂中学生通过自主互助交流,师生不断地总结规律和方法,解题技巧,总体来说课堂效果很好。学生都能掌握解题技巧。

数学运算教学反思8

  教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,在教学中应该注意些什么呢?

  1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

  我们往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解如:(6+4)×9=6×9+4×9是相等的,还要从乘法的意义的角度理解,即左边表示10个9,右边也表示10个9,所以(6+4)×9=6×9+4×9。

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和 25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

  3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

  如:计算125×88;101×89你能用几种方法?对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的'算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。

  4、多练。

  针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

数学运算教学反思9

  今天我上了一节课,课后觉得有很多不尽人意的地方。自己发现无论是在组织课堂方面,还是在教学难点的突破上,以及在时间分配上,都感到力不从心。现在将上课后的反思总结如下:

  上课一开始我通过三个选择题复习有理数的各种运算法则和运算律,目的在于克服学生平时经常出现的错误。然后进行三个基础性的计算题,巩固有理数混合运算的运算顺序和法则,接下来解一道比较复杂的计算题,涉及的运算比较全面,但是在上课中学生出错的比较多,我想如果再加强几个训练题效果可能会好一些,但是考虑到后面还有任务,所以效果不很理想。后面的教学中,第一道题是用四个有理数去计算24,教材上有类似的题目,对有理数的混合运算提出了更高的要求,而且能激发学生的学习兴趣,提高学生学习数学的积极性,他们表现的很活跃。

  其次要站在更高的角度去认识教材,站在平等的角度去对待学生。认真钻研教材,增加自己的知识储备量,把教材钻深、吃透真正理解教材的本意,然后去发展、延伸,只有这样才能达到事半功倍的效果,教师不能只停留在教材的`表面,知其义而不知其理,这样只能是依样画瓢。再就是我觉得不能以教师的眼光去看学生,要和他们站在同一高度上去看待问题,发现学生出错的真正原因,共同去解决出现的问题。我们做教师的往往认为一道题很简单,学生为什么不会,不理解,殊不知是在用十几年甚至是几十年的经验去和刚开始学习的儿童去比较。

  教学工作是一项需要不断探索研究的事情,需要一如既往的热情和不断进取的上进心,在以后的工作中要不断总结经验教训,跟上不断发展变化的教育新形势。

数学运算教学反思10

  课前的情境引入采用学生们都很熟悉并且喜欢的商店购物,先设置一步计算的问题,接着就是两步计算的。两步计算的问题学生在三年级的时候遇到过,不过他们都是写的分步式,少部分学生通过预习知道会写综合式。通过学生反馈的综合式,开始本课的重点,综合计算式的`运算顺序。学生在过去的学习中,知道在有乘法和加法或减法(除法和加法或减法)的算式中,要先算乘法(除法)再算加(减)法,可是他们不知道这种运算叫做混合运算,之前都是教乘加或乘减运算等,所以要让他们认识这种运算,再在以前学习的基础上对运算顺序进行讲解,学习了混合运算顺序之后,通过练习加以巩固。本课的另一个重点就是同级运算顺序,只有乘法、除法或者只有加法、减法的算式要从左往右依次计算。

  在上课中以及在课堂练习的反馈中发现:

  1、混合运算顺序掌握较好,不过书写格式不规范,这个在课堂上纠正过,不过课后依然发现这个问题,必要的话要一个个的纠正了。

  2、同级运算虽然很简单,但是有些学生还是会从右算起走,就我观察来看,有些觉得右边的计算简单就从右边开始。同级运算顺序应该强化。

  3、少部分学生会把混合运算顺序和同级运算顺序混淆,为了区分,我给他们打比方:加、减法是我们一年级的时候学的,我们叫1级运算,乘、除法是而你二年级学的,叫2级运算,加、减法是朋友,是一级的,乘、除法也是朋友,但是他们比加、减法更高一级,就像你们有的同学完的游戏,大怪兽的等级就比小怪兽的等级高,乘除就是大怪兽,加减就是小怪兽,级别高的就先计算,级别低的就后计算,加减、乘除是朋友所以就按我们的书写习惯从左往右的计算。

数学运算教学反思11

  小数四则混合运算是在学生学习了整数四则混合运算和小数乘除法后进行教学的,使学生的四则运算扩展到了小数。虽然学生已经学习了整数四则混合运算的法则,小数四则混合运算的法则仍然是教学的重点和难点。通过本节课的学习,培养学生的计算能力,迁移能力,观察、分析、判断以及抽象概括能力,使学生能够正确地计算小数四则混合运算。

  为了让学生理解运算顺序,也是为后面学习三步一般应用题做准备。让学生运用从条件入手和从问题入手两种方法对应用题进行分析,为后面做好铺垫。学生通过分析列出两种不同的算式。进而让学生思考这两个小数四则混合运算式题的`运算顺序是什么?为什么要这样算?通过具体情境学生理解小数四则混合运算的顺序与整数四则混合运算的顺序相同。

  本节课作为一节计算课,应用题的比重稍大了些。 为了让学生能够自主探索运算顺序,以应用题导入通过具体情境让学生自己总结方法。但是在分析的过程中,应用题的重量显得有些重了。

  学生的计算量不够。 由于对应用题的分析和练习时对运算顺序、方法的分析过多,学生真正去做题的时间不太多,计算得练习量不够。

  教学中要多给学生精彩的评价。 对学生的评价激励性不够。对于精彩的发言,老师给与了肯定,但是语言应更加丰富些,更好的调动学生的兴趣。

  改进措施:

  1、加强学习,积累经验。 在平时的教学中,要多向老师们请教,提高教学设计的能力,使内容更加合理;提高课堂调控能力,能及时准确地把握课堂信息,处理突发事件,更好地为课堂教学服务。

  2、要学会不断的总结、积累。 做一个有心人,在平时备课和教学中,及时记录和总结,不断提高。

数学运算教学反思12

  从五单元学生开始正式学习了混合运算的脱式计算,以前学生也学习过加减法的混合运算,并且还初步认识了小括号,那时是口算,学生只需要说一说运算顺序,然后口算得数,所以对学生来说没有难度。

  但是现在是学习笔算,也就是脱式计算,可以看出,有的学生真的是被混合运算搞“混”了,有的学生学了新的忘了旧的。刚开始学习同级混合运算时,因为学生有以前学生的基础,所以运算顺序没有问题,只是脱式的步骤一少部分学生适应的慢了一些,不过一节课下来就非常熟练了。刚学完简单的同级运算,第二天又学习两级混合运算,这节课有很多孩子开始迷糊,像4×6-9或45÷9+36这种乘法或除法在前边的题目学生都不迷糊,对于运算顺序和脱式书写格式都非常熟练,但是如果是56-35÷7=或23+54÷9=这种题目,有个别学生就不会做了,有的学生先算减法或除法,有的.学生虽然知道要先算除法和乘法,但是不会写脱式格式,例如:56-35÷7=5-56=51,23+54÷9=6+23=29,又经过了一节课的练习,那些学生才学会了正确的书写格式,对于运算顺序也不迷糊了。

  上周又学习了小括号的使用,学生对于小括号使用非常正确。但是有一种练习题,是训练学生把分步改成综合,有时必须加小括号,有时不需要加,但是个别学生每道题都加上小括号,还需要再强调、练习。

  本周要继续学习两步解决问题,希望学生能轻松学会解答方法。

数学运算教学反思13

  整式的乘法是七年级上学期的重点内容,而整式的乘法运算法则是以幂的乘法运算性质为基础的,所以学好幂的运算对后续内容的学习产生较大的影响。根据大多数学生在幂的运算学习中运算法则的应用不熟练,运算符号的'确定易错的问题,本节课通过典型例题帮助学生在进一步提高运算能力并能进行法则的灵活应用。

  依据普陀区中学数学教学常规实施要求:

  复习课教师应遵循“循环出现、螺旋上升、不断深化”的认知规律。本课在实际教学中,一方面由典型基础题帮助学生回忆幂的运算法则,再通过分析幂的运算法则的特征解决易错题;同时在各例题的设计上层层推进。例1单用同底数幂的运算法则解决对于底数不相同但互为相反数的幂的乘法运算;例2需注意区分幂的运算法则与同底数幂相乘法则的不同处,并注意运算顺序与运算符号的确定;例3在对知识点进行系统整理后,综合运用幂的三条运算法则及合并同类项的知识点进一步强化练习,提高综合运算能力;最后由一题两解引导学生逆用法则简化运算。回顾整节课,学生用数学语言概括知识点的能力、综合计算能力有较明显的提高,并能较熟练逆用法则简化运算及解决一些问题。但在学生自主小结中,回顾知识点情况较多,质疑及自身感悟较少,应引导学生感悟数学思想,由此使学生形成数学价值观。我想将以上问题改进后,必将能逐步达到二期课改的发展积极的情感态度和价值观这一要求的。

数学运算教学反思14

  运算定律与简便计算,共包括了五个定律和两个性质:

  加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c

  连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)

  大多数学生对于加法运算定律和乘法的交换律掌握的比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:

  1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)

  34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)

  2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。

  3. 简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的'数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学

  4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4

  5.针对逆向运用,有以下规律

  加法结合律:346+(54+189)=346+54+189

  乘法结合律:8×(125×982)=8×125×982

  乘法分配律:89×75+89×25=89×(75+25)

  减法的性质:894-(94+75)=894-94-75

  连除的简便:350÷(7×2)=350÷7÷2

  逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。

数学运算教学反思15

  回头看以住教学“四则运算”,一般是直奔主题,告诉学生混合运算的运算顺序,先算什么,再算什么。然后让学生进行模仿,机械训练,使学生达到计算的准确、熟练。但练习中忘记运算顺序的情况常会出现。单纯的机械训练,学生只会觉得数学枯燥无趣,感受不到数学的应用价值。在本单元的教学中,我尝试给学生提供探索的机会,让学生经历创造的过程,从中体会运算顺序的合理性和小括号的意义。在探索过程中,学生的思维是自主的,学生的选择是开放的,学生的表述也是多样的。

  反思整个教学过程,我认为这节课教学的成功之处有以下几方面:

  1.注重学生的'自主活动,让学生掌握学习的主动权。

  2.给予学生发展思维的空间,交给学生思考的主动权。

  3.帮助学生逐步掌握解决问题的步骤和策略。