简便计算教学反思

时间:2022-12-27 18:20:31 教学反思 我要投稿

简便计算教学反思15篇

  身为一名刚到岗的教师,我们要有一流的教学能力,写教学反思可以很好的把我们的教学记录下来,那么大家知道正规的教学反思怎么写吗?以下是小编为大家收集的简便计算教学反思,仅供参考,欢迎大家阅读。

简便计算教学反思15篇

简便计算教学反思1

  本节课的内容是在学生学习整数加法运算定律和减法的性质基础上进行教学的。教材中仍然选取体育方面的背景引入加法运算定律在小数加法中的应用,显得十分自然。

  成功之处:学生由于在上节课中对于小数的加减混合运算,知道整数加减法的运算顺序对于小数同样适用。因此,在本节课中学生在计算中都很自觉地采用了简便计算,学生学习上不存在什么困难,新知的学习非常顺利,练习的巩固也很顺畅。

  不足之处:应用加法的运算定律进行小数的`简便计算,学生出错较少,但是在应用减法的性质上学生出错较多。例如:7.3-4.8+1.2和12.89-(6.89+2.3)再教设计:在新知的教学上多设计应用减法性质的练习题及变式练习,让学生灵活解决问题。

简便计算教学反思2

  分数乘法简便计算,是学生学习了分数加减法混合运算,整数、小数的简便计算的基础上进行学习的,然而,原以为学生已学过了整数和小数的简便运算,分数乘法简便运算又只应用乘法交换律、结合律和分配律,学生掌握肯定不错。事实证明上课效果还不错,可是作业中错误率极高。

  回顾了这节课的'教学,整节课通过学生预习反馈,自主举例验证,尝试解决,交流讨论,自主总结等方法,发展学生的自主学习解决问题能力。却忽略了让学生理解知识这个最根本的教学目标。问题主要有以下三种:一是混合运算和简便计算题混淆,乱用简便运算。二是分配律用错的最多,原先的整数、小数利用乘法分配率进行简便计算就是简便计算的难点,碰到分数出错率就更多了。三是分数加减法混合运算与分数乘法计算混淆。

  针对这些现象我采取了以下措施:一引导学生回顾分数乘法和加减法的意义,理解各自的意义;二联系分数乘法和加减法各自的计算方法,并采取针对性练习;三复习整数、小数的与之相关的简便运算,并对常见的分数乘法简便运算的题型予以分类整理,辅之对应练习;四是加强审题的训练,让学生学会判断。五是加强对比练习,认真分析哪些可以简便,哪些不能简便。其实最主要还是抓班级里学习有困难的学生,因为这些错误类型几乎都是由他们所创。

简便计算教学反思3

  在教学本课之前,我安排了这样的预习作业:将左右两边相等的算式用线连起来(共五组),我故意安排了两组不相等的,居然大部分同学都上当了,说明他们对乘法分配律的认识仅仅停留在表面,没有认识到其实质。

  在教学例题时我特别加强了“分别乘”的指导,不但结合实例让学生明白为何要分别乘再相加,而且用一些形象的箭头让学生感受分别乘的过程;而在学生探究了例题和试一试后,让他们通过比较,体会在利用乘法分配律进行简便计算时要根据具体情况选择:有时合起来乘容易,有时分别乘更容易,要灵活运用。

  但是,今天的课堂作业让我十分失望,我本以为“分别乘”的指导比较到位,但还是有一些同学出现15×(20+3)=15×20+3这样的错误,并且有两名学生在解决实际问题中列出了(18+22)×15的算式后,还将它用乘法分配律展开计算,结果计算错误百出,如何让学生灵活地运用所学的.知识,我还得进一步地学习研究。

  本节课主要应用乘法分配律进行简便计算,培养学生灵活合理地进行计算的意识和能力。课的一开始,我就复习乘法分配律,抓住其特点:合起来乘转化成分别乘再加起来或者分别乘转化成合起来乘。接着通过例题和试一试的教学,中间结合类型分别练习相应的题目,再通过比较让学生明白这两组题:有的时候是合起来乘简便,有的时候是分别乘简便,要根据具体的题目来选择。对于后面的练习,我注意引导学生比较和辨析,使学生较深刻地理解适合用乘法分配律进行简便计算的题目的结构形式,培养学生的审题能力,从而使学生更好地运用乘法分配律进行简便计算。

简便计算教学反思4

  本节课一方面巩固学生对加法交换律和结合律的理解和运用,另一方面是让学生在学习的过程中进一步体会到学习运算律的价值。在第一节课的教学中,在揭示运算律的意义时,也曾提到过,但只是点到为止。在本节课中是作为重点来讲的。所以在教学时,要着重体现出学生运用加法运算律进行简便计算的探索过程。

  一、加强了对比的.力度(运用运算律和不运用运算律在计算上的对比)。

  例如在教学例题:29+46+54时,首先让学生尝试自行解决,大部学生根据已有的知识,知道应该从左往右计算,先算29+46=75,75+54=129。少部分学生通过观察发现46+54能凑成100,可以先加起来:29+46+54=29+(46+54)。将两种做法让学生书写在黑板上,让学生进行观察比较。追问:第二种方法正确吗?为什么可以先计算46+54呢?(生:可以凑成100,整百数再加一个数就简便了。)这样对比的结果是显而易见的,使学生清楚地认识到进行简便计算是运用运算律的结果,同时学生也能体会到运算律的价值所在。

  二、小组活动,巧妙安排,得出规律。

  新课改提出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。当学生的学习兴趣被激起,强着发表自己的意见时,我提出让学生通过小组合作,去验证自己的猜测,这是符合学生的内心需要的,他们需要动笔计算证实自己的想法,需要同伴合作及时解决问题,需要通过事实来证明自己是对的。合作不是盲目的,由于合作前的充分酝酿,学生都积极投入到小组学习中。而且在合作前,我给学生提出要分工合作,使学生的活动能够有序进行。合作是成功的,先是紧张的举例验证,然后是有效的总结交流。规律的得出顺理成章,同学们体验到了探究的乐趣,体尝到了成功的快乐。我也体会到了教学的乐趣。

简便计算教学反思5

  本节课不足的地方有许多,听完同事们的点评后,我反思主要有下面几点:

  一:口算材料不妥当。我设置了类似4( )=56这样的题,原本是想帮助学生较快地找到56可以变成4乘以几,为后面拆成乘法作铺垫用的。但是在上课的时候,发现这个材料的出示很唐突,与学习内容脱节了。现在想想,当学生做2556这样的题目时,教师给予指引,想4( )=56或564=( )就行了。

  二:缺少最优化的意识。本节课我非常注重算法的多样化,但是对于最优的办法如何筛选缺少重视。在这个环节上,需多让学生进行评价他们中的一些方法好在哪里?不好在哪里?最后需要达成共识,最优的方法是什么?并且组织全班同学多说几次,让每个人都记准确,然后要求学生运用最优的方法进行计算。

  三:缺乏有效的'方法小结。在学生会解决几道类似这样的题目时,需要回顾解题的过程,得出有效的解题方法。本节课里教师与学生在这方面都显得比较薄弱些。

  四:时间安排不合理,以致后面的练习没有时间完成。

简便计算教学反思6

  简便计算相对于普通的四则混合运算来说既又它讨人喜欢的地方又有让人头痛的方面。简便计算对于学有余力的学生来说是比较简单的,运用了运算定律后,计算变得很简单。但是对于一部分学困生来说是非常复杂,难理解的。特别是乘法分配律的运用,总有一些学生理解起来有一定的难度。

  为了让这堂课上得扎实有效,本课设计了两个环节:

  (1)复习运算定律;

  (2)运用运算定律进行简便运算。

  在复习运算定律时,让学生通过自主梳理运算定律,并从不同的角度去思考,进行分类比较,为下一步的灵活运用奠定了基础。在总复习时不能满足于掌握常见的五个运算定律,要加以引申,扩展学生的知识面。应用运算定律进行简便运算时,改变以往的做法,出示学生课前测试中简便运算出错的`题目以及一题多解的典型题目。接着又出示学生课前自己搜集的错题让学生分析错误,这样学生积极性更高了,学生在选题时要进行大量的阅读,这本身就是一个自我复习的过程。学生出的题目很出乎我的意料,学生们精选的题目具有以下三个特点:

  (1)覆盖面全,涵盖了小学阶段所有的简便运算的类型。

  (2)关注了学生易错的题目。

  (3)关注了一些生僻的解法。

  我们要相信学生,给学生一个舞台学生会还你一片精彩。最后还找了一些学生平时容易出错的题目供学生判断和一些思维拓展题供学生计算,学生如果做的好,采取一些鼓励机制,如加分或加星等。整堂课下来学生的精力高度集中,教学效果也好。

简便计算教学反思7

  关于运算定律与简便计算,上课效果还不错,可是作业中稍稍转弯就出现惨不忍睹的局面。曾经我把它定论为学生思维的灵活性不够,却始终没有从教师角度去反思,那么问题究竟出在哪里?由于准备的内容和新授的知识练习密切,学生往往不需要太多的思考,新授的问题就迎刃而解,这样会大大地缩小学生思维的空间,教学这个载体的作用如何发挥呢?又怎样来培养学生的高层次深度的思考?第二:新授内容的学习有老师帮助检索有关的旧知,离开教师,学生是否能独立解决问题呢?学生自己选择信息检索旧知的能力怎样培养?所以有的学生就会说:“哦,简单,简单!”上课都听得懂,回家自己做练习就困难了,经过反思与揣摩后,,我认为在教学关于运算定律与简便计算应从下面几点找手。

  1、充分利用学生已有的感性认识,促进学习的迁移。

  对于小学生来说,运算定律的概括具有一定的抽象性。学生由于思维还处在形象思维阶段,分析能力偏低,观察也难于顾全大局,只着眼于数字。学生对于类似题目还是容易混淆。只注意数字,不注意运算符号和根据何种运算定律

  好在学生通过第一学段的学习,对加法和乘法的一些运算规律已经有所了解,这是搞好本单元教学的有利条件。

  在教学中,我让学生扮演数学医院医生的角色,让他们给就医的“病人”看病和开具药方,

  例如:我出示:(1)125×(8+10)=125× 8+10

  (2)(25+7)×4=25×4×7×4

  (3)(25×7)×4=25×7×25×4

  (4)35×9+35=35×(9+1)

  学生把每题的错例都剖析的清清楚楚,这样就帮助学生把这些零散的感性认识上升为理性认识

  2、加强数学与现实世界的联系,促进知识的理解与应用。

  本单元教材最明显的特点之一就是关注数学的现实背景,从社会生活中来,到社会生活中来,到社会生活中去,体现了数学教学回归社会、回归生活的愿望。因此,领会教材这一意图,用好教材,借助数学知识的现实原型,可以调动学生的生活经验,帮助学生理解所学运算定律,构建个性化的知识意义。进而,凭借知识意义的理解,也有利于所学运算定律的运用。

  3、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。

  对于小学生来说,运算定律的运用具有一定的`灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的机会。教学时,要注意让学生探究、尝试,让学生交流、质疑。相应地,老师也应发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发,当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学

  4、在各种教学中,其实我们要注意运用整合观念,从整体来观察。我们的教科书知识显得有点零散,不利于学生的整体思维。因此,象简算这种题目,我们可以把各种简算题型分类整理,让学生从整体认识到个别比较,加深简算的印象。我想,这也许更利于学生的学习与思维吧?

简便计算教学反思8

  曾经真的以为自己是一个很负责任的人:我爱我的学生,我爱我的数学教学,甚至可以为了我的学生与数学教学,放弃我个人的休息时间,为的只是我爱的'学生能爱上我教的数学,能把数学学得很出色。然而为什么总是事与愿违,成效“背叛”了设想,作业“背叛”了课堂?一切显得那么捉襟见肘,“徒劳无功”成了我这学期最大的感受,到底问题出在哪里呢?当我回想起教学中一点一滴的琐事,老师们交流时的经验之谈,再重新翻阅起一些理论书刊时,我似乎意识到自己其实早已经“背叛”了数学教学。

  “哦,简单,简单!”黄玄昶又乐滋滋地高高举起他的手,果然不出我所料,他的回答又正中我的下怀,这不正是我所期望的答案吗?说实话,开公开课我就喜欢像他这样的学生,积极举手发言,而且一步一步被我“引进”来,突出所谓的教学重点,攻克预设的教学难点,最后解决相应的问题,“看上去很美”,真的,经过我的“引导”,他能“自主探索”,寻求规律,最后消除疑问,这不是一件看上去很“完美”的事吗?

  可是……“怎么又错了!”我真是纳闷,上课如此“高效”的人,怎么作业就这么惨不忍睹?题目稍一拐弯,就转不过来了,曾经我把他定论为思维的灵活性不够,然而上完这堂《利用乘法分配律进行简便运算》后,经过反思与请教,我终于发现我错了。

简便计算教学反思9

  四年级下学期第三单元是《运算定律与简便计算》。它把加法运算定律和乘法运算定律放在了一起,学生在学习了加法运算定律后,随后学习了乘法运算定律,这样,有利于知识的迁移,学生更容易理解。在简便计算这一部分中,除了应用“加法和乘法运算定律”进行简便计算以外,还安排了减法和除法的简便计算。可以说简便计算的方法,在这一册中全部出现了。如何让学生把这些简便运算都掌握,并且能融会贯通的运用,这是我们每位老师所思考的首要问题。在教学中我认为要把握以下几个方面:

  一、学会寻找题目的特点。

  (1)看到数字5、25、125想到数字2、4、8。将他们相乘,凑成整数。

  例如:25、36,把36写成4×9。变成25×4×9,使计算简便。

  (2)把接近整数的写成整数和一个一位数相加减。

  例如:202×32,把202写成200+2,变成200×32+2×32,使计算简便。

  (3)寻找能凑成整数的数,把它们相加减。

  例如:126×5+5×74,发现126+74=200,就可以运用乘法分配律,5×200,使计算简便。

  例如:357-64-57,发现357和57,都有一个57,相减正好是整数,可以运用数字搬家的方法:357-57-64,使计算简便。

  二、巧妙运用简便计算。

  简便方法的目的是通过用整数来参与计算,达到使计算化难为易的'目的。题目的简便计算是千变万化的,主要是要让学生看懂根据题目特点,灵活选用简便计算。

  例如:28×25的计算方法可以是(A)(20+8)×25=20×25+8×25(B)(7×4)×25=7×(4×25)(C)28×(100÷4)=28×100÷4

  三、注重题目的对比。

  有些学生对于简便计算,你出10题,他做下来可能是题题错。学生很难掌握简便计算的一个原因就是将题目混淆,故就不知道该题该用哪种简便计算。教学中,教师要加强类似题目间的对比。

  例如:(25×20)×4与(25+20)×4的比较,前者是运用乘法结合律,后者是运用乘法分配律

  例如:125×88和88×102的比较,前者是拆88,把88拆成8×11或88拆成80+8,后者是拆102,把 102拆成100+2。

  总之,教学要根据教学内容的特点,为学生提供了多种探究方法,才能激发了学生的自主意识,才能唤醒了学生的求知欲望,才能促使学生对知识进行更新、深化、突破和超越。

简便计算教学反思10

  这节课的内容是“小数加减法的简便计算”,是节计算课,但主要是让学生自己验证两条规律:整数的加法运算定律同样适用于小数,以及整数的减法运算性质也同样适用于小数。之后灵活运用规律进行简便计算。

  上课开始,我先让学生进行口算的训练,目的是让学生观察后发现这些数字的'特征,得出结论:小数加法,可以通过尾数相加凑整;小数减法,可以通过尾数相减凑整。这为小数的简便计算奠定了一定的基础。

  之后,我抓住学生有利的观察结果,引导学生对三个整数算式进行数字观察,学生的思路慢慢打开,我趁机询问,这用到了整数的什么规律?在学生的大脑里,过去的知识慢慢呈现,一个接一个补充地更加完整。

  顺着学生的热情高涨,我抛出了一个问题:六一节前夕,东东准备买四样食品各1份,价钱分别是:4.38元、17.3元、0.62元、2.7元。问东东一共应付多少元?我没有急于让学生计算,而是提出了3个问题:你能列出综合算式吗?如果请你计算,你会算吗?你能想出几种不同的算法?学生在我的引导下,纷纷动脑筋,想算法。最后我根据学生的思路,把全班分成两个组进行比赛。明显发现运用加法运算定律计算的那个组算得又对又快。由于观察计算结果相同,从而归纳出整数加法运算定律同样适用于小数。

  有了加法运算定律可以简便计算作铺垫,学生对于小数减法,很自然得也想到能不能利用减法运算性质来简便计算。通过教学例二,学生一尝试,发现也是成立的。于是经过填一填、判一判、算一算几个环节来强化新知。最后综合运用所学的知识,来解决生活中的小数加减法简便计算问题。

简便计算教学反思11

  运算定律与简便计算,共包括了五个定律和两个性质:

  加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c

  连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)

  大多数学生对于加法运算定律和乘法的交换律掌握的比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:

  1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)

  34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)

  2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。

  3. 简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的.,而是需要大力练习。二、设计对比练习,促进有效教学

  4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4

  5.针对逆向运用,有以下规律

  加法结合律:346+(54+189)=346+54+189

  乘法结合律:8×(125×982)=8×125×982

  乘法分配律:89×75+89×25=89×(75+25)

  减法的性质:894-(94+75)=894-94-75

  连除的简便:350÷(7×2)=350÷7÷2

  逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。

简便计算教学反思12

  本节课在解决,“还剩多少页没有看”这个问题的过程中,教师可让学生利用自己的生活经验和已有的知识,用自己的思维方式积极主动地尝试解决问题。不同的学生用不同的方法解决问题,最后得出三种解法。教师可以让学生在介绍自己解决问题的方法的过程中领悟各种简便计算的方法。在交流探索中,培养学生根据具体情况选择简便算法的意识与能力,力求每位学生都能获得成功的喜悦。

  在探索简便计算的方法中,让学生将自己的计算方法跟其他同学的方法进行比较,说说自己解法的'优点,缺点,通过不同解法的比较来认识和选择最简便的方法。就是有意识的让学生从实例中体会,“多中选优,择优而用”,也体现了《新课标中》的算法多样化的要求。

简便计算教学反思13

  简便计算是小学计算教学中的重要组成部分。我的理解是:简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。

  这段时间我们一直在教学简算,开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的不断增多,学生开始对一些类型混淆了,随着简算方法的多样化,简算的准确性也大打折扣。于是,我开始困惑、开始思考、我开始发现:简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算。

  于是,我让学生做了大量的直接简算的题。通过练习,引导学生总结出一些常见的可以简算的对象,如:“25与4相乘”、“125与8相乘”、“5与任何双数相乘”以及其他的可以凑整的数,同时使学生对简算有了比较深刻的理解。

  其中“运用乘法分配律进行简算”是学生最不容易掌握的。根据以前的教学我发现,特别是一些变式简算就更加的困难了。我认为主要原因就是学生没有自觉观察算式特点的习惯。学生对于计算的`目的是得到答案,而忽略了计算的过程,这也跟我平时的教学习惯有很大的关系。比如:有这样一道题(80+8)×25,学生完成后,我随即将该题改为“88×25”让学生做,学生做出了两种答案:①、88×25=80×25+8×25=20xx+200=2200;②、88×25=11×(8×25)=11×200=2200。我请学生分别介绍了他们的想法,他们说:第①种是把88分成80+8,再利用乘法分配律,让他们分别同25相乘;第②种则将88分成8×11,然后利用乘法交换率和结合率,先把8与25相乘,最后再乘11。

  听完学生的介绍后,我进行了总结,首先肯定了两种答案的正确,然后对两种答案进行了分析:两种答案的共同之处在于都发现了8与25相乘非常简便,可以凑整。于是想方设法对88进行分解,因此都把握住了这道题的关键,所以都是正确的;两种解法的区别是,分解的方法不同,第①种解法是用加法进行的分解,所以使用的是乘法分配律。第②种解法用乘法进行的分解,所以使用的是乘法交换律和结合律。方法不同却有异曲同工之处。

  由此可见,简便运算的思路会有很多,只要把握“凑整”这个解题关键,正确、合理地使用运算定律,就是正确的。

简便计算教学反思14

  教学加减法、乘除法的运算定律,学生对单纯的运算定律能有个初步的理解,但是对实际计算中运算定律的运用不能灵活地加以运用,对这节的教学我有以下几点想法:

  1、充分利用学生已有的感性认识,促进学习的迁移。

  对于小学生来说,运算定律的概括具有一定的抽象性。在此基础上,本单元的教学应着重帮助学生把这些零散的感性认识上升为理性认识。在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。

  2、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。

  对于小学生来说,运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的.机会。教学时,要注意让学生探究、尝试,让学生交流,相应地,老师也应发挥主导作用,当学生探究时,仔细观察,认真揣摩学生的思路,酌情因势利导,不失时机地给予适度启发,当学生交流时,耐心倾听,洞悉学生的真实想法,加以必要的点拨,帮助学生讲清自己的算法,让其他同学也能明白。

  3.注重教学内容的现实性。

  (1)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。

  (2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课首先引导学生观察身边的现象,渗透变与不变的的观点;采撷生活数学的实例。引导学生产生疑问,同时激发学生大胆探索的兴趣。

  (3)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整,让学生参与教学材料的提供与组织,给学生创设了一个创新和实践的学习环境,既激发了学生的学习动机和探究欲望,又使学生的身心得到了一种成功的体验。

简便计算教学反思15

  连除简便计算是在学生学习了加法、乘法运算定律和减法性质的基础上进行教学的。让学生理解并掌握“一个数连续除以两个数,可以用这个数除以两个除数的积,也可以用这个数先除以第二个数再除以第一个数让运算变得简便”是教学的重点,因此我有意识地强化了“根据算式特点灵活运用除法运算性质进行简便计算。”这也是本课的难点。为了突破重难点,我在设计时作了这样的处理:

  1、在教学中渗透学习方法的指导,因为有减法性质的基础,我认为学生应用类比迁移能够比较自然地想到除法的运算性质,所以我依托“类比迁移”的数学思想,以“猜想---验证---应用”的教学思想引导学生展开自主探究。采用这种教学思路的意义在于渗透一种“学习方法”,这对培养学生的可持续发展能力应该是有帮助的。有句话说得好,“让学生在游泳中学会游泳”,这也是我在平时课堂教学中想努力追求的。

  2、教学环节设计紧凑,环环相扣,从复习铺垫到新知的探究和巩固练习我都做了精心的设计。复习铺垫部分我设计了几道可以进行简便计算的加法、减法、乘法和除法的练习题,以这几道题为依托为进入下个环节的猜测进行了准备,比如说:148+75+5=343-75-25=25×(4×6)=425-(125+27)=237-38-137=它们都和本节课的知识有紧密的联系,目的是让它们根据这几道题的方法很容易的联想到除法是不是也有这样的规律,事实证明,这几道题是有效的,当我出示4500÷25÷4=时,并提出问题是不是也有简便方法时,很多孩子马上进行了猜测,很自然的引出了新知的探究,让孩子们的猜测更有目的`性、方向性和可行性,我认为这个地方的设计思路很好,但由于这些数值偏大,学生算起来不太好算,而这节课重点是为了探究规律,如果把数设计的小一点会更好算,重点会更突出,更节省时间。新知的探究环节我让学生以小组为单位举出这样的实例,这个环节虽然设计很好,但由于孩子年龄小,在举例子时又缺乏引导,很多孩子无所适从,不会举例子,我只好亡羊补牢,又进行引导,结果浪费了宝贵的时间,以至后来的环节时间有点紧,如果备课时再细心一些,充分考虑到孩子的起点,效果会好得多。但是巩固练习部分我觉得设计很好,不仅形式多样而且内容充实,有效的巩固了新知,让孩子对除法的性质和简便运算理解的更透彻,运用得更熟练!不足是因为前面的环节占用时间太多,练习题没有处理完。

  这节课还有很多不足,发现规律后,我本来想让学生结合生活实例再次验证,但因为对习题的选择不是太合适,所以只验证了其中的一个规律,而对于第二个规律,习题却不能完成验证,这一点是一个失误,应该进行修正,如果把习题再认真选一选效果一定要会好得多。

  还有本节课教师的语言设计不是很精练,不能起到画龙点睛的效果,验证结束后,学生得到连除的计算方法有三种,为了强调简便计算,我应该及时引导:“这三种方法,如果让你选择,你会选择哪一种?”从而让学生明白,解决问题的方法有很多种,但要学会根据算式中的数据特点,灵活选择简便的方法进行计算。这也是我们的数学的价值所在,可惜没有及时引导,很遗憾!

  总之,本节课既有成功,又有不足,在第二次上课时,我会扬长补短,争取把这节课上的更完美!