圆的面积教学反思

时间:2023-02-28 09:23:54 教学反思 我要投稿

圆的面积教学反思(13篇)

  作为一名人民教师,教学是重要的任务之一,借助教学反思我们可以拓展自己的教学方式,那么应当如何写教学反思呢?以下是小编精心整理的圆的面积教学反思,欢迎阅读,希望大家能够喜欢。

圆的面积教学反思(13篇)

  圆的面积教学反思 篇1

  本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程达到化。

  1、让学生多种感官参与学习,形成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。

  如揭示圆的面积定义,基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的兴趣,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的形成,达到了预想的教学目的。

  2、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。

  例如通过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的长方形、平行四边形时,课件提供的虚拟实验,使它们的.面积公式推导过程完整展示在学生面前。学生不仅概括归纳出面积计算方法,感悟到转化的思想在几何学习中的妙用。而且学生在抽象、概括、归纳推理过程中接受严密的逻辑思维训练,形成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和能力。从而顺利的想到圆的面积计算公式也可以这样推导。

  教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,通过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生通过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。

  但是在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应该改进的地方和努力的方向。

  圆的面积教学反思 篇2

  《圆的面积(二)》是在学生掌握了圆的面积计算公式的基础上进行教学的。主要是让学生利用圆的面积公式,解决生活中的一些实际问题,体会转化的数学思想。在本课的开始,我请学生回忆圆面积公式的推导过程。已知周长,求圆的直径、半径。在此基础上,让学生独立解决已知半径,求面积,已知直径,求面积,已知周长,求面积三个问题,学生在这种情况下,学习圆的面积计算,有利于知识的迁移。

  在教学过程中,我从根据圆的半径,直径,求圆的面积,到根据圆的周长计算圆的面积,体验其中的不同,先让学生已知半径,求面积,已知直径,求面积,再到已知周长求面积,这样设计降低了教学难度,使学生明白要求圆的.面积必须知道圆的半径,从而突破了教学难点。

  在学生掌握了圆的面积计算方法以后,我让学生猜测,圆还可以转化成我们以前学过的什么图形,圆的面积与什么有关,让学生进行估测,当学生猜测出圆还可以转化成我们以前学过的三角形,圆的面积,可能与圆的半径有关系时,设计实验验证。沿半径把圆形杯垫剪开,并把纸条从长到短排列起来,观察并探索圆的面积公式,出示和圆有关的组合图形,让学生通过仔细观察与分析,结合前面学过的平面图形的面积知识,求出老师出示的组合图形的面积。学生的好奇心,求知欲被充分调动起来,而这些为他们随后进一步展开探索活动做好铺垫。

  我在本节课中利用动画演示与动手操作相结合,加深学生对题目的理解,结合所学的知识,让学生学以致用,解决创设的情境问题等基础练习,提高练习,综合练习,拔高练习四个层次,从四个不同的层面对学生的学习情况进行检测。既巩固所学的知识,又锻炼了学生的综合运用能力,拓展学生的思维,注重了每个练习的侧重点,较好地完成了教学目标,学生学习积极性高,乐学,课堂气氛活跃、和谐,学生亲身经历提出猜想,动手实验、验证,得出结论的过程,对知识进行再创造。

  教学中存在不足和需要改进的地方:没有加强训练小学生的计算能力,在上课过程中发现学生的计算速度比较慢,学生还没有达到熟练的程度,特别是当半径等于一个小数,这时学生最容易犯错。在以后练习中,重点训练小数的平方,达到正确解决问题的目的。

  圆的面积教学反思 篇3

  圆是最常见的图形之一,它是最简单的曲线图形。学生初步感知当正多边形的边数越来越多时,这个正多边形就会越来越接近圆。经过对圆的研究,使学生初步认识到研究曲线图形的基本方法,借助直线图形研究曲线图形,渗透了曲线图形与直线图形的关系。从“以旧引新”中渗透转化的思想方法;从“动手操作”中渗透“化曲为直”的思想方法;从“探究演变过程”中,渗透极限的思想及猜想与实验验证的思想方法。

  一、以旧引新,渗透“转化”思想

  俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下头探究圆的面积计算的方法奠定基础。

  二、动手剪拼,体验“化曲为直”

  在凸现圆的面积的意义以后,经过比较复习的平面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,也能够拼成三角形和梯形。学生动手剪拼好后,选择其中2~3组进行观察比较,发现如果把一个圆形平均分成的份数越多,这个图形就越接近图形平行四边形或长方形。这个环节的.设计也是“极限”思想渗透的最好体验。三角形和梯形能够让学生自我下课后推导。

  再比较圆形和这个拼成的图形之间的关系。经过剪、拼图形和原图形的比较,将圆与拼成图形有关的部分用彩色笔标出来,构成鲜明的比较,并为后面推导面积的计算公式作了充分的铺垫。

  三、演示操作,感受知识的构成

  经过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,贴合学生的认知水平。

  圆的面积教学反思 篇4

  《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  透过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,透过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。

  一.明确概念:

  圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生务必明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生给它们分别起个名字,红色封闭的曲线长度是圆的周长,蓝色的是曲线围成的圆面,它的大小叫圆的面积。透过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的'内涵,从而顺利揭题《圆的面积》。

  二.以旧促新

  明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎样发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使明白,也能够让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

  根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是透过长方形推导的,三角形面积公式是透过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是透过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题能够转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我能够很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。

  三.转变图形

  根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。思考学生的实际状况,电脑先演示8等份圆,拼成一个近似的平行四边形,让学生观察它像什么图形?为什么说“像”平行四边形?让学生发表自我的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎样样?电脑继续演示16等份的圆,放在一齐比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎样样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想―极限思想的渗透。

  四.公式推导

  平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c2=πrh=r,平行四边形的面积=圆的面积,从而推导出S=πS=π×r×r=πr2。

  此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,那里课件没有一一演示,而是留给学生充分的空间,让学生自由创新。正如《画》谈“马一角”的文字,“看似未曾着墨处,烟波浩渺满日前。”结合学生拼成的图形并推导,采用不完全归纳法,发现都推导出S=πr2,透过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维潜力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

  圆的面积教学反思 篇5

  求圆的面积是从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己地想象,从估计到公式的推导;从数方格到剪拼成学过地平面图形;从已有地平行四边形、长方形面积公式推导出圆面积公式等等这一系列活动引导学生参与并讨论从而形成结论。教学中教师还特别强调学生估算意识的培养和由旧知引入新知的过渡。

  首先在让学生估一估圆的面积活动中,通过圆的面积与圆内接正方形和圆外切正方形面积的比较,既估计了圆面积的大小范围,又再一次渗透了正多边形逼近圆的方法。然后教学中让学生把圆进行分割,再拼成一个近似平行四边形或长方形的图形,如果分割的`份数越多,拼成的图形越接近长方形或平行四边形,由此用平行四边形的面积计算公式或长方形面积计算公式来推导出圆的面积计算公式。

  圆的面积教学反思 篇6

  本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程达到最优化。

  一、让学生多种感官参与学习,形成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。

  如揭示圆的面积定义,基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的形成,达到了预想的教学目的。

  二、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。

  例如通过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的长方形、平行四边形时,课件提供的虚拟实验,使它们的面积公式推导过程完整展示在学生面前。学生不仅概括归纳出面积计算方法,感悟到转化的思想在几何学习中的妙用。而且学生在抽象、概括、归纳推理过程中接受严密的逻辑思维训练,形成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和能力。从而顺利的想到圆的面积计算公式也可以这样推导。

  教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,通过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生通过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的.宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。 因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。这一节课里我觉得学生学得很主动,由于大胆放手让学生运用以有的知识经验去解决新问题,学生感受到了成功的喜悦。同时我也觉得在新课改的理念下我们把学习的主阵地还给学生,学生的各方面能力得到了很大的提高。通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图

  但是在教学过程中,对于圆的面积公式还应让学生多点时间去思考,去推导。还可以让学生用其它的方式去推导、理解。在细节的设计上还要更精心。

  圆的面积教学反思 篇7

  一、教学目标

  1、知识与技能

  (1)知道圆的面积公式推导过程;

  (2)会用圆的面积公式计算圆的面积;

  2、过程与方法

  经历动手操作讨论等探索圆的面积公式的过程;

  3、情感态度与价值观

  积极参加数学活动,体验圆的面积公式推导的探索性和挑战性,感受公式的确定性和转化的数

  学思想。

  二、教学重点:

  圆的面积的计算

  三、教学难点:

  推导圆的公式的过程;

  教具准备:多媒体课件、圆片、胶水、剪刀

  四、教学过程:

  (一)、创设情境,导入新知

  1、同学们喜欢看动画片吗?今天老师给你们带来一段动画片。(出示课件)

  2、师:我们要求小朋友的活动场地有多大,就是求圆的什么? (圆的面积)

  3、拿出事先准备好的圆形学具,摸一摸,指一指,感受圆的周长和面积。

  4、设疑:那么圆的面积怎样求呢?

  5、教师让学生说出以前学过的平行四边行图形的面积公式是怎么的来的?然后复习演示平行四边行的公式推导过程。

  6、要求圆的面积,怎样把圆形转化成以前学过的图形呢?

  (1)、设疑导入,激起学生学习的兴趣.

  (2 )、复习渗透转化的思想,为推导圆的面积埋下伏笔.

  (二 )合作探究

  把圆形转化成以前学过的图形探究圆的面积公式

  师:同学们开动脑筋,小组合作看能把圆转化成什么图形?

  (1) 学生动手操作;

  (2) 交流演示各组拼出的图形。

  (3)教师用课件演示。

  教师用课件演示长方形的长与宽和圆的周长与半径的关系.得出圆的面积公式S=

  问: 那么要求圆的面积必须知道什么条件?

  (三)解决问题

  (一)、已知圆的.半径,求圆的面积

  例1、一个圆形花坛的半径是3m,它的面积是多少平方米?

  (二)、已知圆的直径,求圆的面积

  例2、圆形花坛的直径的20 m,它的面积是多少平方米?

  (三)、已知圆的周长,求圆的面积

  例3、一个圆形储水池的周长是25.12 m,它的占地面积是多少平方米?

  四 巩固练习

  1、判断对错:

  (1)直径相等的两个圆,面积不一定相等。。 ( )

  (2)两个圆的周长相等,面积也一定相等。 ( )

  (3)圆的半径越大,圆所占的面积也越大。 ( )

  2、根据下面所给的条件,求圆的面积。

  (1)半径3分米

  (2)直径20厘米

  五、知识拓展

  在一个边长为8厘米的正方形里画一个最大的圆,这个圆的面积是多少平方厘米?

  六、总结:学生谈收获

  反思:本节课较好地完成了教学目标,学生学习积极性高,课堂气氛活跃,学习效果好。学生亲身经历提出问题,动手实践,分析验证,通过把圆形转化成以前学过的图形的活动,激发学生学习数学探究新知的兴趣,让学生动手操作,动脑想象,动口说理等活动,用多种感官感知拼成图形与圆形的关系,运用推理得出圆的面积公式,让学生亲身经历知识形成和发展的过程,对知识进行再创造,体验了学习新知的喜悦。其次,通过利用面积公式解决数学中的实际问题,培养学生应用数学的意识和运用所学知识解决实际问题的能力。

  圆的面积教学反思 篇8

  片段一:

  师:同学们,在我们的日常生活中有许多长方体、正方体纸盒(出示一个长方体和一个正方体纸盒)猜一猜,制作这两个纸盒时哪个用的纸板多?

  生1:我觉得长方体用的纸板多。因为它比这个正方体长。

  生2:我觉得正方体用的纸板多。因为它比这个长方体高。

  生3:我觉得这两个纸盒用的纸板同样多。因为长方体比正方体长,而正方体又比长方体高,所以就同样多。

  师:究竟怎样才能得出正确结果呢?你觉得我们应该怎么办?

  生:我们应该分别计算出它们六个面的总面积。

  师:请大家拿出长方体或正方体纸盒,摸一摸、说说他们的表面积都包括哪些?

  生:边指边说,包括上下、左右和前后六个面。

  反思:课的开始,创设一个让学生猜一猜做一个长方体纸盒和正方体纸盒,哪个用的纸板较多的情境,引发学生思考,用什么方法才能比较出来呢?学生通过思考与交流,认识到必须分别计算出六个面的总面积,这样设计能激发学生产生好奇心,使学生在自主的观察中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。

  片段二:

  师:如果告诉我们这个长方体纸盒的长、宽、高,你能想办法算出做这个长方体纸盒至少要用多少平方厘米硬纸板吗?(长6厘米、宽5厘米、高4厘米)

  师:小组讨论一下,借助手中的'长方体,想办法算出所求问题,并把结果写在作业本上,并在小组中交流一下自己的方法。

  生:小组活动,反馈交流。

  生1:我先求出每个面的面积,再把这六个面的面积相加,就能算出这个长方体的表面积了。列式:65+65+64+64+54+54

  生2:我先把长方体相对的面的面积计算出来,再把三大部分加起来,就能算出这个长方体的表面积了。列式:652+642+542

  生3:我先求出上面、前面、左面的面积,然后用它们相加的和再乘以2,就求出六个面的总面积。因为长方体中有三组相对的面的面积相等。列式:(65+64+54)2

  师:这几种方法都可以,你喜欢用哪一种就用哪一种。但在实际生活中还会遇到很多实际情况,我们要根据实际情况灵活运用计算表面积的方法。

  反思:当学生急于想知道长方体表面积的计算方法时,如果把求法直接告诉学生或引导学生一步一步推导出表面积的公式,就不利于学生创新思维的发展。因此,让学生通过小组讨论、探索尝试计算等,共同探索出长方体表面积的计算方法,不仅学生自己主动参与了获取知识的过程,而且也自己探索到解决问题的方法,同时培养了学生的求异思维。

  片段三:

  师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?

  生1:正方体同长方体一样都是六个面,而这六个面的面积是相等的,每个面都是正方形,所以我认为正方体的表面积等于一个正方形的面积乘6。

  生2:正方体的六个面都是正方形,面积相等,所以正方体的表面积等于棱长棱长6。

  师:请大家快速计算出刚才这个正方体它的表面积。

  生:336,我用33求出正方体一个面的面积,再乘以6就求出6个面的总面积。

  反思:正方体的表面积的计算方法是在长方体表面积的基础上推导出来的,教师没有讲,而是把迁移类推的机会留给了学生,让学生自己去发现,类推出正方体表面积的计算方法,培养了学生的逻辑思维能力。

undefined

  圆的面积教学反思 篇9

  这节《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  一.明确概念:

  圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。首先利用课件演示课本上的圆形花坛,让学生直观感知绿色线条的轨迹是条封闭的曲线,它的长度是圆的周长,绿色曲线围成的圆面,它的大小叫圆的面积。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵。

  二.以旧促新

  明确了概念,认识圆的面积之后,自然是想到该如何计算图的'面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,为新知的“再创造”做好知识的准备。根据需要选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。并强调在推导的过程中你发现图形的什么变了?(形状)什么没变?(面积),转化前后两个图形之间有什么关系?

  根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。这个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。

  三. 转变图形

  根据发现,把圆等分成若干等份,小组合作,动手摆一摆,转化成学过的平面图形。让学生把课前把附页中的图剪下拼成的图拿出并观察它像什么图形?为什么说“像”平行四边形(或长方形)?让学生发表自己的意见,充分肯定学生的观察。并利用课件展示分别等分成8、16、32份拼成的图形,并一再强调在推导的过程中你发现圆的什么变了?(形状)什么没变?(面积),转化前后两个图形之间有什么关系?还展示学生的三个拼图,引导学生闭上眼睛,如果分成64、128等份呢?让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的长发形就愈像,就愈接近,完成另一个重要数学思想———极限思想的渗透。

  四.公式推导

  长方形的面积学生都会计算:s=ab。引导学生观察长方形的长和宽与圆有什么样的关系:发现a=c/2 =πr b=r, 长方形的面积=圆的面积,从而推导出S=πr×r =πr2,强调r2表示两个r相乘,并利用课件展示它们的关系。

  通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

  五、实践活动。

  在学生已能把已知圆的r、d求面积的基础上设计这一环节的活动:2人小组合作拿出课前准备好的圆形纸片或圆柱形物体、绳子、尺子.想办法测量出你所需要的数据,求出圆形纸片或圆柱形物体横截面的面积是多少?通过动手操作,小组合作的形式完成本活动,通过参与学生的很多,发现学生的办法很多,有通过对折找直径、半径再求面积的,也有两人合作用绳子围住圆片一周,再用尺子量出圆的周长,通过周长求圆的半径,再求面积,我都肯定了学生的方法,同时我特别表扬最后一种方法,并说明理由:在生活中求树干的横截面的面积等圆柱形横截面的面积的物体时这种方法适用。

  六、善用表扬

  在课堂教学过程中,表扬有着十分重要的作用。因为从某种意义上说,几乎人人都有一种希望别人肯定、称赞自己的心理(尤其是这些小学生们,这种心理更为强烈),这种心理一旦得到满足,便会形成愉悦的情感,产生巨大的精神力量,使自己那些受别人肯定和称赞的言行迅速的得到强化。因此,我在上课时都是想方设法从学生的言行中找到值得肯定和赞许的东西,不失时机地加以表扬,尽量满足学生的这种心理,以形成良性的教学循环。

  总之,这节课以这样的教学形式进行教学,从课后学生完成的课后作业的正确率很高就可以知道效果非常好。但因为学校的场地及教学设备在课前临时做了很大的调整,所以我和学生都不适应,课堂活动显得拘束了很多,很多环节都放不开,在时间上我掌握得也不是很理想,介于此,我还在课前的预设(教案)中进行一些调整。

  圆的面积教学反思 篇10

  圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。因此在教学《圆的面积》时,我力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展,设计了以下几个环节:

  一、导学激趣,渗透“转化”

  本课开始,我引导学生回忆学过图形面积公式,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的.方法奠定基础。这部分学生在口述过程中对推导的过程说得不是十分到位,许多同学都忘记了,里面具体环节没有说出来。但通过我用课件演示,给学生视觉的刺激,调动了学生原有的知识储备,为新知的“再创造”做好知识的准备。

  二、大胆猜测,激发探究

  在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。

  三、演示操作,加深理解

  当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。

  这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。

  在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。

  另外,在进行圆的面积推导时,给周长怎样求面积这一环节,由于没注意,在求半径时让学生用C÷2÷∏,而没有及时地纠正用C÷∏÷2,这在教学上显得不够灵活,今后在这方面要注意细心。

  总之,这节课上得自我感觉还是比较成功,从始至终思路清晰,教学媒体运用较好,环环相扣,使学生学得活,学得扎实,达到预期的教学效果。

  圆的面积教学反思 篇11

  《圆》的教学是小学数学教学的重要组成部分,而圆的面积又是其教学中的重点和难点,它是后面要学习的圆柱和圆锥的基础,其重要性不言而喻。学习本节内容的知识基础是圆的认识以及长方形、平行四边形、三角形、梯形等平面图形面积的推导过程。转化的数学思想是学习本节内容的策略和学习手段。

  在学习“圆的面积”公式推导时,我让学生先说说以前学过的平面图形面积推导的过程与方法,进一步渗透“转化”的教学思想,让学生猜想:圆也是平面图形,能不能用转化法,把它转化成以前学过的图形推导出来呢?然后让学生看书,引导动手操作:先把圆平均分成2个半圆,把每个半圆平均分成若干份,展开,交错拼在一起,观察拼成了什么图形?(近似的长方形。)课件演示:再把半圆分成更多等份拼在一起。学生发现:分的份数越多,拼在一起就越接近长方形。然后学生观察思考:通过这样拼,什么变了?什么没变?拼成后长方形和原来的'圆有什么关系?

  学生明确了:它们的面积相等,长方形的长=圆周长的一半,宽=圆半径,进而推导出圆的面积计算公式。通过这样的剪、拼、验证,把圆转化成已学过的平面图形(长方形),从而推导出了圆的面积计算公式。通过这一学习过程,学生不仅获取了新知,更提高了学习能力。

  圆的面积教学反思 篇12

  圆是小学阶段学习的最后一个平面图形,学生认识直线图形到曲线图形,不论是学习资料的本身还是研究问题的方法。都有所变化,是学习上的一次飞跃。

  透过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,透过对圆有关知识的学习,不仅仅加深学生对周围事物的理解,激发学生的学习数学的兴趣,也为以后学习圆柱、圆锥打下基础。

  一、感受圆的周长与面积的不一样,明确概念

  本课开始,我先让学生比较圆的周长与圆的面积有什么不一样,之后结合会议平行四边形的.探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

  二、学具与多媒体辅助教学,激发探究

  透过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。此刻回想起来,我不应该一上来就问如何计算圆的面积,而应先让学生猜测圆的面积可能与什么有关,当学生猜测出来圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自己手中的小圆分成若干个小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,后来让学生观看多媒体演示分成64等份、128等份,让学生体会从一个不规则图形到近似的一个长方形的过程。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自我制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具会更利于操作。)

  三、分层练习

  结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不一样的层次对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,简单的解决问题。在每一道练习题的设置上,都有不一样的目的性。但在练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与解决问题的过程中来。今后教学中应关注学生对的参与程度,知识的掌握程度,促使学生主动发展,提高课堂教学效果。

  数学来源于生活有服务于生活,能够应用宋学只是解决生活实际问题这是学习数学的最终目的。在本节课,都让学生真切地感受到数学就在我们身边,数学与生活是密切相关的,用所学知识解决生活中的实际问题是一件很有成就的事,从而树立学好数学的信心。

  圆的面积教学反思 篇13

  学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。

  根据以前的经验,也总是通过实例,也就是实际操作,让学生感受到圆环的面积该如何求,但是总有一部分学生不明白为什么要用大圆的面积减去小圆的面积。

  总有疑问,如何改进呢?看似简单的问题,有人却总不明白,主要问题还是不明白圆环的概念,另外教学进度过快,也是其中原因之一,过高的估计了学生的理解能力,总是认为这类问题很简单不需要有过多的'解释,倒致后来无论如何补进,学生总是不会,学生的第一印象特别深刻,不容易忘记,与其后来的反复强调,不如现在改进,因些,我想这样做,首先是一明确概念,。

  概念的理解,是呈阶梯状,分层次来理解,首先是初步感知生活的圆环,用课件出示,轮胎,光盘,胶带等,使学生有了初步的印象,第二步画圆环,通过观察或量一量圆环,你有什么发现?此时的学生已有了深度的理解,在些基础上,剪圆环,并出示一些同心圆和不是同心圆的图片,来让学生分辨,明白圆环是同心圆。

  第三步则是认识各部分的名称,既大半径和小半径,环宽,并通过练习来巩固认识,练习一些找大圆直径或小圆直径的,半径的等练习,经过上面的一系列的缓慢过程,有实际操作也有课件濱示,还有练习,非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。也为下面的从而为下面求环形的面积作铺垫,而后是求圆环的面积,自然而然,学生肯定也明白了怎样求圆环的面积。

  学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。有了亲身的体会,学生很容易求出圆环的面积,但是为提高课堂效率,仅此一点往往是达不到预期的效果,接下来我打破常规,不是在理解的基础上,出示练习题目,进行单纯的练习,这样做学生也会感到枯燥无味,于是我随机提出问题让学生思考,”知道了圆环的面积如何求,如果给出了两个半径可以很简单的求出圆环的面积。

  但在实际生活是不是只会给出半径,求环形的面积?如果不是,还可能会出现什么?怎样解决这一问题?”要求小组合作,讨论解决,经过这一过程,学生展示出现了各种类型,事实证明让学生尝试计算,分析验证,比较计算学生正确,并应用大半径、小半径、“环宽”之间的关系练习设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。

  通过以上的各个环节,本节的课容量大,既有基础又有拓展,学生的积极性也极高,全体参与,使每个人都有不同程度的发展。

【圆的面积教学反思】相关文章:

《圆的面积》教学反思09-01

圆的面积教学反思02-05

圆的面积教学反思11-27

圆的面积教学反思(精选5篇)06-16

圆的面积教学反思15篇09-02

圆的面积教学反思13篇02-19

《圆的面积》教学反思12篇03-27

圆的面积教学反思(15篇)04-03

《圆的面积》说课稿10-27