数学平行四边形的面积教学反思15篇
身为一名刚到岗的人民教师,我们的任务之一就是教学,借助教学反思我们可以快速提升自己的教学能力,教学反思我们应该怎么写呢?以下是小编帮大家整理的数学平行四边形的面积教学反思,欢迎大家分享。
数学平行四边形的面积教学反思1
《平行四边形的面积》这一课自我感触颇多,有成功中的喜悦,也有不足中的遗憾,总结本节课的教学,有以下体会。反思这节课,具体概括为以下几点:
第一、创设问题情景,引起矛盾冲突,激发了学生的学习兴趣。
第二、重视操作探究,发挥主体作用。为了引起学生的兴趣,我准备了一个可活动的长方形框架,如果把它拉成一个平行四边形,周长和面积有变化吗怎样变化如果任意拉这个平行四边形,你会发现什么什么情景下它的面积最大设计意图:经过这个拓展题目使学生体会平行四边形面积的变化,从而理解的更透彻,运用的更灵活。使学生在练习中思维得到发展,培养学生分析问题和解决问题的本事。
第三、渗透“转化”的思想。“转化”是数学学习和研究的一种重要思想方法,在本节课的教学中,以学生的探究活动为主要形式,教学过程由浅入深,由易到难,由具体到抽象,由感性认识到理性认识,步步深入,紧扣主题。同时渗透“转化”的思想,让学生掌握学习的方法,学会利用旧知识解决新的问题,构成积极主动的探究氛围。
第四、联系实际设计习题,学习资料始终充满生活气息。
存在的一些问题和困惑:
1、应变课堂本事的教学机智不够灵活需要多锻炼。如新知猜想时耗时过多。
2、学生数学知识的底蕴要加强。学生拿着平行四边形,不明白如何动手操作,把平行四边形转化成长方形。这也与我前面的铺垫、启发不到位有关,当学生不能独立作出来时,教师要及时给予指导和启发,能够这样启发:同学们看一看,平行四边形的高与底边是什么位置关系?如果能利用这一点来转化呢?沿着什么剪?
就“平行四边形的面积”的教学而言,平行四边形的面积公式是什么,不是什么?平行四边形的面积为什么是“底×高”,为什么不是“底×邻边”?经过把平行四边形不断“拉扁”,引导学生逐步了解高与面积之间的内在联系,理解高对平行四边形面积的影响,在让学生获取知识的同时,悄然无声地渗透了函数思想。
其实,澄清错误与建立正确认识同样重要。不急于引导学生对正确情景的理解,而更多地让学生自我在尝试解决问题的过程中发现问题,产生矛盾冲突,并引导学生参与对问题和错误的剖析。平行四边形面积为何是“底×高”,为何不是“底乘邻边”?疑问的解答,需要的是观察、比较、分析等充满挑战性的'过程,在这样的过程中,学生一步步澄清平行四边形的面积“是什么,不是什么”,明白“这样才是正确的,那样为什么是错误的”,就会获得真正的数学理解,推理本事也能得到发展。“推拉转化后,面积发生变化”的表象得到强化,进一步澄清学生潜意识中“平行四边形的面积=底边×邻边”的错误认识。在不断地比较、交流过程中,错误经验得以纠正,模糊认识得以澄清,数学思维得以发展,创新意识和学习本事得以提升。可是在澄清与比较分析中,时间运用的也较多,对于“精讲多练”的目的没能到达。这种剖析,在日常教学中都是分多个课时进行,完全揉入一节课,甚至微型课,需要我思考如何从别处挪出时间出来,精心雕琢方有提高。
数学平行四边形的面积教学反思2
《平形四边形的面积》是学生第一次用转化的思想方法探索面积计算公式,在探究过程中获得的数学思想、活动经验对学生下一步探索三角形、梯形和圆面积公式具有很强的借鉴作用,因此转化的方法和转化思想的渗透无疑是本课教学的重要目标。
一、注重数学专业思想方法的渗透。
我在这节课中,先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,有利于有能力的同学向转化的方法靠拢。
二、注重学生数学思维的发展。
在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动。
在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的`互动关系,产生教与学之间的共鸣。例如:当学生展示完自己的方法后,教师引导:你认为他的方法怎么样?好在哪儿?你还有什么问题?通过教师设计的这些问题,不断地把课堂引上了师生互动,生生互动的高潮。
四、练习的设计,由浅入深,环环相扣。
1、让学生进行两个平行四边形面积的计算,是对平行四边形面积公式的应用。
2、让学生对平行四边形面积公式逆向思考,给了面积和底或高求高或底。
3、辨析同底等高的平行四边形面积是否相等。
五、我的遗憾
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善。自己觉得在引导和组织学生上欠缺一些,在引导学生把平行四边形“转化”成长方形的操作活动中,没有把学生的积极性调动起来,有些学生的操作活动没有很有效进行,导致那里的教学时间过于长。
教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
数学平行四边形的面积教学反思3
“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程,数学教学要求紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设各种情境,为学生提供从事数学活动的机会,激发他们对数学的兴趣,以及学好数学的愿望。”为此,老师们都非常重视情境的创设,力求将自己置于组织者、引导者、合作者的地位,树立以学生为主体的教学观。
对于情境教学,首先我们应该充分重视“问题情境”在课堂教学中的作用,不仅要在教学的引入阶段格外注意,而且应渗透到教学过程的每一个环节,在情境中不断激发学习冲动,使学生经常处于渴求新知的状态,激发其自身的学习动力和思维空间。其次,从长远的前景来看,引入教学情境不仅要让学生“学会”数学,更重要的是使他们“会学”数学,培养他们在生活中科学地思考,把学习中探索、体会到的观念、方法尽快地提升到理论的高度。当然,要设置好情境还不可忽视情境创设和教材主旨的统一,始终坚持从激发学生的学愿望和参加动机出发。以下我将根据情境教学的要求结合《平行四边形的面积》来谈一谈?
1、把数学知识的教学融于现实情境中,学生在情境中学的高兴,学的扎实。我通过主题图这一个情境,将新知的学习置于这一现实情景中,通过猜想、转化、平移、旋转、演示等活动,进一步加强数学知识与生活的'联系,感受数学在生活中的作用,体会学习数学的意义与价值。
2、充分发挥学生的主体作用,加强学生主观能动性的培养。整节课中,老师给学生提供了探究交流的时间和空间,并创设多种教学活动,激发学生兴趣,学习与巩固知识。例如在平行四边形面积计算方法推导过程中,老师先让学生独立思考,然后互相交流,最后动手操作,把平行四边形转化成长方形,推导出平行四边形的计算方法,在平等和谐的氛围中培养了学生的合作意识、团队精神和动手能力。
3、 有效的渗透了数学的一些思考和学习方法。在教学中,老师让学生经历了提出猜想—操作转化—验证猜想这一过程,对学生以后学习三角形面积和梯形面积打下了良好的基础。
4、充分利用小组合作这一课题的有效性,发挥学生的主体地位和主观能动性,加强师生合作、生生合作,培养学生的合作能力和交流能力。
数学平行四边形的面积教学反思4
本节课是平行四边形面积计算的第一课时,重点是探索并掌握平行四边形的面积计算公式,会用公式计算平等四边形的面积(须找准平行四边形底与对应的高)。难点是探索平等四边形的`面积计算公式(用割补法把平等四边形变成长方形,根据长方形面积公式推导出平行四边形的面积公式),这也是我们以后探索三角形、梯形面积公式的一种基本方法。
因此,作为第一课时,我设计的重点就在推导平行四边形面积计算公式的自然引导及探索过程和找准平行四边形的底和高计算面积底和高。一节课教学下来,反思有以下不足:
(1)从教师自身来说,有点紧张,导致关注学生不够,学生的积极性调动不理想。
(2)从设计来说,旧知导入(出示生活中的情景图找学过的图形并抽象出长方形,平行四边形。比在教室里找图形节省时间得多);例2可作为一个基本练习,不作为例题,这样练习题型可丰富些。
(3)从现场教学效果来说,本节课设计了一个思考题可以培养学生的思维能力及空间想象能力,但因为断电和时间关系未展示;另一个最为遗憾的是学生反思与小结,应将推导平行四边形面积计算公式的过程提升到一个理性的高度,师适当用一两句话小结,以便为今后图形面积计算公式的探索打下基。
数学平行四边形的面积教学反思5
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。
关于这节课,我是这样设计的:首先,通过比较两个图形的大小来引入到对新知识的学习中来,让学生明白要知道各个图形的面积才能进行精确的比较。然后在新知识的学习时,从数格子中了解到这两个图形的面积是一样的。为下面的拼图形作好铺垫。同时让学生明白数格子有它的局限性,让学生思考有没有其他的方法来求平行四边形的`面积。接下来就是让学生进行动手操作,试着将平行四边形转化成一个我们已经学过的图形,从而让学生自己推导出平行四边形的面积计算公式。在这个过程中,让学生发现平行四边形和转化成的长方形之间的联系,使学生对平行四边形的面积公式的推导有更深的认识。在得出平行四边形的面积公式后,进行例1的教学,让学生运用刚学的知识解决这一问题。最后在练习的时候,强调在计算平行四边形的面积时一定要知道底和底所对应的高,这样才能计算。同时,由S=ah所衍生的另两个公式:S÷a=h、S÷h=a,也得到了一定的应用。
教学是一门永远有遗憾的艺术,虽然我也很努力地想上好这节课,但在教学中存在着很多问题,需要以后在教学中不断改进。
数学平行四边形的面积教学反思6
新课标要求我们教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。所以,在《平行四边形的面积》一课的教学中,我让学生动手实践,自主探究,让他们经历了知识的形成过程。而本节课大部分时间都是学生活动,例如:学生借助已有的经验和方格图,让他们初步感知平行四边形的面积可能与它的底和其对应的.高有关,再通过剪、拼等活动,让学生在操作、观察、比较中,概括平行四边形的面积的计算方法,在此过程中教师还应注意数学思想方法的渗透,即“转化”思想的渗透,让学生学会用以前的知识来解决现有的问题(例如放手让学生将自己准备的平行四边形,通过剪拼转化成长方形,这样学生有非常直观的“转化”感受。)此时,教师可以这样对学生说:“探索图形的面积公式,我们可以把没学过的图形转化为已经学的图形来研究。”这样一来,学生比较容易想到将新的、陌生的问题转化成相对熟悉的问题。从而促进学生主动探索解决问题的方法,体会解决问题的策略,提高学生的数学应用意识。
除此之外,在课堂练习设计分了3个部分:
1、基础练习
2、提升练习
3、思维训练,
题目以多种形式呈现,排列遵循由易到难的原则,层层深入,吸引了学生的注意力,使各个层次的学生都有面对挑战的信心,激发了学生兴趣、引发了思考、发展了思维。
数学平行四边形的面积教学反思7
在多边形的面积这一单元的教学中,都是以引导学生自主探索为教学目标。让学生通过剪拼、平移、旋转等方法,把未知转化成已知,并在动手实践的过程中,发现各种图形之间的内在联系,从而探索出平面图形的面积公式。
平行四边形面积公式的基础是长方形的面积公式,学生在三年级已经掌握,所以教材首先引导学生探索平行四边形的面积公式。例1出示了两组不规则图形,让学生比较每组的两个图形面积是否相等?通过交流运用剪拼、平移的方法转化成长方形后发现每组的两个图形面积相等。接着进入例2的教学环节:出示一个平行四边形,提出“你能把平行四边形转化成长方形吗?”带着学生进入了平行四边形面积的探索过程。先让学生感受转化思想再运用转化方法探索新知,但是学生在这一过程中真正是自主探索吗?教师是引导还是支配?如何真正引导探索呢?我产生了这样的想法:沟通知识间的联系,引发对新知的自主探索。
呈现第一个问题:“有四根小棒,两根8厘米,两个4厘米,你能拼成学过的平面图形吗?请画在方格纸上”。(学生在方格纸中画出了平行四边形或长方形)
呈现第二个问题:“这两个图形有什么联系吗?”
(学生出现争议:周长相同,面积相同;周长相同,面积不同;周长和面积都不同。)
对学生出现的争议,最好的办法就是让学生自己解决。于是辩论开始了:
生1:“都是由两根8厘米和两根4厘米的小棒围成的图形,周长是相等的`”。对于周长相等,大家都达成了共识;生2:“长方形面积是长乘宽,8×4=32,平行四边形的面积也是8×4=32,所以面积相等”;生3:“不对,平行四边形的边是斜的,长方形的这条边是直的,不能都用8×4”;对于面积的比较产生了异议。
师:“认为平行四边形的面积是8×4的同学请说明这样算的道理;认为不是8×4的同学请想办法算出这个平行四边形的面积?”同学们拿出课前剪下的平行四边形忙开了,自主探索的过程自然开始了。
数学平行四边形的面积教学反思8
有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上;学生的数学学习内容应该是现实的、有趣的、富有挑战性的;动手实践、自主探索与合作交流,是学生学习的重要方式。这节课中,我在学生想想、剪剪、拼拼等活动中,最大限度地调动学生多种感观,让他们的手、眼、脑等都参与到学习活动中去。让学生有理有据地思维,即达到了“平行四边形面积”的主动构建。调动了学生已有的知识和经验,去解决问题,“创造”知识。使他们将接受知识的过程转变为能动参与过程,成为真正的探索者、发现者、创造者。有利于学生创新意识与实践能力的.培养。
主要体现在以下几个方面:
1、本节课充分的利用教材,引导学生去发现教材中隐藏的数学知识,发挥了教材在教学中的主题作用。
2、从生活情境出发,为学生创设探究学习的情景。
在教学中,教师首先让学生观察街区图。让学生看到各种图形都是来源于生活实际,也体会到了计算它们的面积的用处,这就使学生对学习平行四边形面积计算的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
小学数学内容来源于生活实际。只有植根于生活世界并为生活世界服务的课堂,才是具有强盛生命力的课堂。新课程强调把课堂变成学生探索世界的窗口,学生活中的数学,获得合作的乐趣,生活融入甚至成为课堂教学,课堂教学本身就是生活,经历、体验、探究、感悟,构成了教学目标最为重要的行为动词。
3、重视学生的自主探索和合作学习
在教学中,通过先让学生利用数方格填表格的方法,初步了解给出的平行四边形的面积和长方形的面积是相等的,接着引导学生观察、发现表格中的秘密,猜想出平行四边形的面积等于底乘高,最后学生小组合作通过动手操作把平行四边形转变成长方形,进一步验证了学生的猜想。在这节课中教师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……这样才能迸发出学生创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
“学习任何知识最佳的途径都是由学生自己去发现,因为这种发现才是最深刻、也最容易掌握其中内在规律性质与联系”。经过学生动手、动脑、交流,把求平行四边形面积这一探索过程充分展示出来。不仅深化了对公式的理解而且渗透了转化和变换的数学思想,培养了学生操作能力和分析概括的能力,发展了学生的空间观念。
4、充分利用教学资源,自制课件,发挥多媒体辅助教学功能。
本节课还充分发挥了计算机辅助教学的功能,直观、形象、动态地展现知识的形成过程,有效地突破教学难点,帮助学生深刻理解新知,建立清晰表象,提高教学效果。
总之,本节课学生亲身经历了探索的过程,在头脑中建构了新的数学模型,使学生体验到成功的喜悦。教学成功的关键在于关注了学生的学习过程,不是让学生机械地重复历史中的“原始创造”,而是让他们根据自己的体验并用自己的思维方式重新去创造出有关的数学知识;不是盲目接受和被动记忆课本或教师传授的知识,而是让学生主动运用已有的知识和经验进行自我探索,自我建构。创设了一个有利于学生生动活泼、主动发展的教育氛围,教师要真正成为教学的组织者、引导者和合作者。
数学平行四边形的面积教学反思9
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”
《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。我设立的教学目标是
(1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;
(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
(3)引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重数学思想方法的渗透
在教学设计方面,我先是创设情境,激发学生的学习兴趣,进出课题:《平行四边形的面积》,再让学生通过数方格,动手操作等、验证平行四边形的面积公式,最后通过练习,巩固知识,解决实际问题。
二、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长×宽,所以平行四边形的面积=底×高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的面积推导方法,也为今后推导三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个推导过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
四、我的遗憾
1、课堂氛围不够浓厚,可能是学生太紧张,我在课前也没有让学生放松心情,课前可以给学生讲笑话或者故事,让学生放松心情,课堂氛围会好一点。
2、有些引导语不是很贴近学生,有时候学生不会很快回答出来,需要思考的时间,或者后时候不知道怎么回答,这是因为老师的引导语或者提问的表达方式不够恰当。
3、最后一个小故事与本节所讲的`内容联系不是很大,没有用到本节所讲的知识,运用的是平行四边形的不稳定性,对于学生来说,有一定的难度,最后一题的设计不是很合理。
4、板书字体不够工整,漂亮,还需要多练习,多改进。
5、课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种和第二种,后一种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第三种剪法。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
数学平行四边形的面积教学反思10
《平行四边形的面积》这一课自己感触颇多,有成功中的喜悦,也有不足中的遗憾,总结本节课的教学,有以下体会。
反思这节课,具体概括为以下几点:
第一、创设问题情景,引起矛盾冲突,激发了学生的学习兴趣。
第二、重视操作探究,发挥主体作用。
为了引起学生的兴趣,我准备了一个可活动的长方形框架,如果把它拉成一个平行四边形,周长和面积有变化吗?怎样变化?如果任意拉这个平行四边形,你会发现什么?什么情况下它的面积最大?通过这个拓展题目使学生体会平行四边形面积的变化,从而理解的更透彻,运用的更灵活。使学生在练习中思维得到发展,培养学生分析问题和解决问题的能力。
第三、渗透“转化”的思想。
“转化”是数学学习和研究的一种重要思想方法,在本节课的教学中,以学生的探究活动为主要形式,教学过程由浅入深,由易到难,由具体到抽象,由感性认识到理性认识,步步深入,紧扣主题。同时渗透“转化”的思想,让学生掌握学习的方法,学会利用旧知识解决新的问题,形成积极主动的探究氛围。
第四、联系实际设计习题,学习内容始终充满生活气息。
存在的一些问题和困惑:
1、应变课堂能力的教学机智不够灵活需要多锻炼。
如新知猜想时耗时过多。
2、学生数学知识的底蕴要加强。
学生拿着平行四边形,不知道如何动手操作,把平行四边形转化成长方形。这也与我前面的铺垫、启发不到位有关,当学生不能独立作出来时,老师要及时给予指导和启发,可以这样启发:同学们看一看,平行四边形的高与底边是什么位置关系?如果能利用这一点来转化呢?沿着什么剪?
就“平行四边形的面积”的教学而言,平行四边形的面积公式是什么,不是什么?平行四边形的面积为什么是“底×高”,为什么不是“底×邻边”?通过把平行四边形不断“拉扁”,引导学生逐步了解高与面积之间的内在联系,理解高对平行四边形面积的影响,在让学生获取知识的同时,悄然无声地渗透了函数思想。
其实,澄清错误与建立正确认识同样重要。不急于引导学生对正确情况的接受,而更多地让学生自己在尝试解决问题的.过程中发现问题,产生矛盾冲突,并引导学生参与对问题和错误的剖析。平行四边形面积为何是“底×高”,为何不是“底乘邻边”?疑问的解答,需要的是观察、比较、分析等充满挑战性的过程,在这样的过程中,学生一步步澄清平行四边形的面积“是什么,不是什么”,明白“这样才是正确的,那样为什么是错误的”,就会获得真正的数学理解,推理能力也能得到发展。“推拉转化后,面积发生变化”的表象得到强化,进一步澄清学生潜意识中“平行四边形的面积=底边×邻边”的错误认识。在不断地对比、交流过程中,错误经验得以纠正,模糊认识得以澄清,数学思维得以发展,创新意识和学习能力得以提升。但是在澄清与对比分析中,时间运用的也较多,对于“精讲多练”的目的没能达到。这种剖析,在日常教学中都是分多个课时进行,完全揉入一节课,甚至微型课,需要我思考如何从别处挪出时间出来,精心雕琢方有进步。
数学平行四边形的面积教学反思11
教学“平行四边形面积的计算”时,一向发踊跃的潘晓迫不及待发说:“平行四边形的面积就是用相邻的两条边相乘。”也有学生大声反驳:“不对,是底乘高。”我没有顺势评判他们的正误,而是让潘说想法。“长方形、正方形都是特殊的平行四边形,长方形和正方形的面积是长乘宽,是相邻的两条边相乘,所以平行四边形也可以用相邻的两条边相乘。”我心里不不由地赞叹:多好的逻辑推理!“这位同学你是怎么想的呢?”“我听妈妈说的。”“他们谁说的有理我们不妨研究一下。”
学生开始各自的研究……之后,大家汇报研究结果。
生1:我们画了长方形和平等四边形把它们剪了下来,再把平行四边形拼成了长方形。这样一比,发现长方形的面积大,所以平行四边形面积不能用相邻的两条边相乘。
生2拼成一个长方形,数这个长方形占的方格数就行了。这个长方形的宽和长分别是平行四边形的高和底。
生3:我们画了一个平等四边形,和它的高,顺着高剪下一个三角形,把平行四边形重新拼成了一个长方形。新拼成的长方形的长和宽就是平行四边形的底和高,长方形的面积用长乘宽,平行四边形的面积应该用底乘高。
我们再来看看潘的表现:她拿着一个平行四边形学具走到讲台前:“我开始的想法是错误的,请大家看—”说着,她捏住平行四边形的一组对角,向两边拉,“平行四边形相邻的两条边的长度没变,可是它的面积变小了,所以不能用相邻的两条边相乘来计算平行四边形的面积。我还发现,平行四边形的面积变了,高也就变了,所以面积一定和高有关。”
有时,我们为了保证课堂教学的顺利进行,往往启发、示范在前,为学生扫除一切障碍,或者对学生的错误置之不理,生怕“吹皱一池春水”。殊不知,一串串微弱的创造火花就在这小心呵护与视而不见中熄灭了。我们不妨让这可爱的错误“激起千层浪”,这正是创造力爆发前的契机,别错过它,相机诱导,让这思维的火花碰撞、绽放。
[思考与对策]:
课堂师生互动过程中出现“非预设生成”的原因是多方面的,但就上述情况,我觉得主要还是老师在教学预设时对学生的学习起点了解不足,只重视应该的`状态(学习的逻辑起点),而忽视现实的状态(学习的现实起点),造成教学预设不够充分,以至于对学生非预设的学习生成置若罔闻。如果是这样,就要求教师在今后的教学预设中,加强对学生现实起点的研究,使教学预设更吻合于学生认知能力与学习材料的最佳结合。“非预设生成”虽然会让教师感到有点棘手,但往往也会给师生带来意外的感觉。这种意外往往给学生带来探究的冲动,如果探究活动带来收获,学生就会有积极的情绪表现。因为这种临时探究与被老师预设的探究有完全不同的感受,生命的活力经常在这样的情境中让人感动。
因此,既然这部分学生对于今天学习的知识已经有所认识,我们何不让他们说说你是怎么知道的呢?通过个人的尝试,我发现让学生们展现他们已有的知识状况,这种知识展现对于他们来说是激动人心的。当他们把自己所掌握的知识告诉同学与老师的时候,他们是在享受,享受学习给自己带来的快乐。并且,他们会以极大的热忱,把自己掌握知识的来龙去脉,尽其所能告诉老师和同学,这既是对自身学习进行再思考的过程,也是给其他同学以激励的过程。而老师的任务,则是根据学生不同的现实起点,抓住本知识内容的核心问题,以问题的形式要求学生继续研究,给予解决。面对问题,不论是起点高或低的学生,都会争先恐后地加入研究的行列,因为他们愿意享受这种因学习而带来的被重视的快乐。
后六人给我的一个重要的启示是,他们在真正的让学生有实实在在的自主学习的时间,也在配合用多种不同的方式来激发学生自主学习,在培养学生自主学习的方法能力上取得了一定的成绩,自主学习能力的形成不是一日之功。“桥中人,人人有希望,个个须努力,只有拼搏今天,才能拥有灿烂明天。”
数学平行四边形的面积教学反思12
在《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。这节课我设立的教学目标是:(1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。 反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、可取之处:
1、注重数学学习方法的渗透 在数学教学中,要注重数学思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。我在这节课中,先让学生回忆长方形的面积是怎样求的?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知 ,有利于有能力的同学向转化的方法靠拢。重视转化思想的渗透,通过自主探究和合作学习解决实际问题。通过把不熟悉的.图形转化成我们熟悉的图形来计算它的面积,这在数学学习中是一种好的方法。让学生进一步理解转化思想的好处。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。我有意识的引导学生多种方法剪拼,想突破平行四边形高有无数条,拼法也有无数种,可是没有达到预想的效果。在充分动手操作的基础上采用小组合作的方法比较平行四边形和长方形长和宽的关系,推导出平行四边形面积的计算公式。
2﹑充分给足学生自主探索的时间。
本节课的教学重点是掌握平行四边形的面积计算公式,并能正确运用公式解决实际生活问题。教学难点是把平行四边形转化已学过的基本图形,通过找关系推导出平行四边形的面积公式。所以我在本课设计了让学生自己动手剪,移,拼,把平行四边形转化成一个长方形,接着小组合作完成推到过程:长方形的面积与原平行四边形的面积相等,长方形的长相当于平行四边形的底 ,长方形的宽相当于平行四边形的高,因为长方形的面积= 长 × 宽 ,所以平行四边形的面积= 底×高。学生通过亲自动手实践,实现新旧图形的转化,有利于学生主动构建新的认知结构,使知识的掌握更长久、牢固。同时在动手操作的过程中,学生的主体地位得到确立,边操作边思考,边观察边寻思,从中有所悟。
二、还需要改进的地方:
1、在进行把平行四边形转化为长方形时,让学生理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键,其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等,而我只强调了拼后的面积相等这个概念,为什么面积相等?这个关键的问题我却没有追问,由于担心时间不够也省了,忽视了学生在动手操作中,即将探究出的知识薄而未发,这样就使得学生的操作只停留到了表面,而没有在操作的过程深层次经历知识的形成过程,正因为在这个关键问题上疏忽,导致了学生对平行四边形面积推导过程茫然的情况。
2、学生在剪拼时,只注重结果,没有适时归纳过程。让学生理解只要沿着平行四边形的一条高剪下,都可以拼成一长方形。这一环节处理层次不够清晰,导致时间过长。虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。例如,平行四边形不但可已转化成长方形,如果是一个菱形(也就是四边相等的平行四边形),通过割补、平移是可以转化成正方形的,因为担心自己不能很好的把握课堂节奏,完不成教学任务,所以这节课我只处理了将平行四边形转化成长方形的一种情况,这样就限制了学生的思维,没有给学生思维的空间和机会。所以我在讲梯形和三角形的面积时便吸取了这次的经验教训。给学生思维的空间和机会,让他们从众多的方法中找到最适合自己的,加深学生对新知识的理解和掌握。
教学是一门有着缺憾的艺术。我相信做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
数学平行四边形的面积教学反思13
本节课资料是在学生已经学会长方形、正方形的面积计算的基础上掌握平行四边形的特征,并认识平行四边形的底和对应的高的基础上教学。我能根据学生已有的知识水平和认知规律进行教学。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,经过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习进取性。经过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、教师为主导的教学思想。
一、渗透“转化”思想,引导探究
经过本节课的学习,要能够为推导三角形、梯形面积的计算公式供给方法迁移。“转化”是数学学习和研究的一种重要思想方法。
我在教学本节课时采用了“转化”的思想,先经过数方格求面积发现数方格对于大面积的'平行四边形来说太麻烦,然后根据观察表格中的数据,引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,之后引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。
之后,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。
二、重视操作试验,发展本事
本节课教学我充分让学生参与学习,让学习数方格,让学生剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自我操作——转化——推导的过程叙述出来,以发展学生思维和表达本事。
这样教学对于培养学生的空间观念,发展解决生活中实际问题的本事都有重要作用。
三、注重优化练习,拓展思维
练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。
第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否到达运用公式,解决实际问题。
第二题出示包含剩余条件的图形题,强调底和高必须对应,学习上更上一个层次。
第三题考察学生灵活运用公式求平行四边形的底和高。
第四题认识等底等高的平行四边形的面积相等。现不要学生计算,引导学生撕开它们的面积相等吗?并说明理由,让学生明确两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等。本课练习能促使学生牢固的掌握新知。
数学平行四边形的面积教学反思14
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学习平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
一、重在每个孩子都参与
本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和平行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的'方法,还有的孩子用剪切和平移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
二、渗透“转化”思想,让所积累的经验为新知服务
“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!
数学平行四边形的面积教学反思15
按昨天学习的体会我在自己班里实践了一下,课堂上收获了惊喜与平淡,现记录如下。
1、准备学习材料,有点小困难。
课前准备,我都会考虑材料尽可能简单,但效益要达到最大化。本节课就给学生准备一个平行四边行,供学生探究用。
在word上画平行四边形时,遇到了困难。底与高都要取厘米数的平行四边形我不知道怎么设置,急中生智,用了一条参考线段就完成了。但邻边就没办法了,结果做出来的邻边长2。3厘米。不过这样的学习材料并不影响学生的研究。
2、尝试也出现三种思路。
课始,我开门见山就让孩子们量出平行四边形的相关数据,计算平行四边形的面积。(边指周长与面积的环节都省了,这个环节有必要吗?)大部分学生能按自己的理解进行测量并计算,十来名学生三分钟的探究不知道如何下手。这是我始料未及的,课前的准备还是不太充分。下次是不是给那些没办法研究的小朋友准备个研究提示?提示该怎么提示才有效?提示会不会影响那些本来有自己研究思路的学生的思路?或者会不会呈现的材料不够丰富?……有太多的疑问了。
我的课堂上也出现了三种解决平行四边形的面积的思路。
方法一:求周长。
方法二:底乘邻边;
方法三,底乘高。
讲评时,我先展示求周长的思路,学生一看就知道这是不对的。再出示底乘邻边的方法,安琦说:“因为长方形是特殊的平行四边形,长方形面积是长乘宽,所以平行四边形也是长乘宽”。居然与案例呈现的孩子回答的一模一样,难道这是孩子们应然出现的思路吗?当我出示教具把平行四边形拉成长方形时,绝大多数的孩子都赞同了这种方法。“把平行四边形拉成长方形,面积没变化吗?”我急着抛出研究的关键点。连续问了三遍,等了一分钟,终于有人举手了。侠宋上台把原来的平行四边形进行害虫补成长方形,跟拉成的长方形一比较,孩子们这才发现,把平行四边形拉成长方形,面积变大了。第三种方法的得出极其自然。真佩服名师,这个环节的'设计,割补法应然而出,不过既是为了验证“拉”的方法的不正确,又为正确方法埋了伏笔,高!
3、基本练习。
我采用了两道题,一道只呈现对应底和高的平行四边形,一道有多余邻边的平行四边形,结果还是有人掉进陷阱。是不是太早出现干扰因素了?如果第二课时再出现这个,会不会好一点儿?
4、变式练习。
画面积是12平方厘米的平行四边形,孩子们觉得有些简单。怎样把这个环节设计精彩,成为本堂课的第二个高潮点?有待下次继续思考。
5、课尾。
我也采用了朱老师的那三道题,“一个底是8米,高是6分米的平行四边形,面积是多少?”“把它分成两个大小一样的三角形,一个三角形的面积是多少?”“把它分成两个大小一样的梯形,一个梯形的面积是多少?”就让学生答吧,处理有些简单,继续深入,会不会扯得太多?学生一开始力挺的底乘邻边的方法,是不是在这时给个回就比较好?
遗憾与惊喜并存,上课,真有意思!
【数学平行四边形的面积教学反思】相关文章:
数学平行四边形的面积教学反思03-07
数学平行四边形面积教学反思03-08
《面积》数学复习教学反思09-21
平行四边形面积教学反思04-06
《平行四边形的面积》教学反思09-04
平行四边形的面积教学反思06-22
《平行四边形的面积》教学反思08-20
《平行四边形面积的计算》教学反思04-14
数学组合图形的面积教学反思02-19