二次函数教学反思(15篇)
作为一名到岗不久的人民教师,我们需要很强的教学能力,通过教学反思可以很好地改正讲课缺点,教学反思我们应该怎么写呢?下面是小编帮大家整理的二次函数教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
二次函数教学反思1
这周二听了代老师的一节数学课---二次函数的图像,收获颇多。
上课一开始,就对所学过的函数进行了总结复习,使学生在画二次函数图象时列表、描点、连线找得很快、很准确。在讲解抛物线的概念时,利用多媒体直观展示了抛物线的特征,激发了学生的学习兴趣。引导学生自主进行观察、发现、归纳、反思等数学活动,得出二次函数的图象和性质,在教学中,由学生自己动手,通过列表、描点、连线绘制出二次函数的'图象,培养了学生动手动脑的习惯和综合分析归纳的能力。
小组合作学习,发现其中的规律。鼓励学生相互交流自己的想法,并说明理由。如在画出图象后,提问学生“我们可以从图中观察到什么”。渗透了数形结合的思想,培养了学生观察、综合分析的能力,增加了学习的自信心和学习的能力。
老师适时地总结、深化,提高认识水平。老师在不断地总结中渗透数学思想方法,抓住时机培养学生思维的深刻性。如本节课由函数的解析式画出函数的图象,总结出函数的性质,再利用所学知识解决有关问题。在师生的共同讨论中,深化所学知识,培养学生具备反省思维的能力。
二次函数教学反思2
教材分析:
本节课在二次函数y=ax2和y=ax2+c的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自性质。旨在全面掌握所有二次函数的图象和性质的变化情况。同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c。符合学生的认知规律,体会建立二次函数对称轴和顶点坐标公式的必要性。
教学片段:
本节课我是这样设计引入的。
[师] y=3x2的图象有何特点?
[生]很快能说出函数图象以及相关的性质。
[师]y=3x2+5的图象有何特点? y=3x2+5和y=3x2的图象有何关系?
此处的安排是为了让学生明确加上5会使函数图象向上平移5个单位,为本节教学y=a(x-h)2和y=a(x-h)2+k的位置关系埋下伏笔。当然在前一节课已经让学生明确了y=ax2和y=ax2+c的位置关系。并告诉学生口诀上加下减,位变形不变。
[师]y=3x2-6x+5的图象与y=3x2有何关系?
[生]猜想:向上平移5个单位,向左右平移6个单位。
[师]到底向左还是向右?或者是否就是我们所想的这样先向上平移5个单位,向左右平移6个单位?我们这节课就来研究二次函数y=ax2+bx+c的图象(板书课题)
教师和学生一起对y=3x2-6x+5进行配方化为y=3(x-1)2+2的形式。
此处的处理感觉很不自然,但是从y=3x2-6x+5再引出新课这一作法又让我不舍得放弃,希望行家提出好的`过渡方法。
[师]研究y=3(x-1)2+2的图象比较复杂,你准备先研究什么函数的图象?
[生]可以先研究y=3(x-1)2的图象。
前面复习过y=ax2和y=ax2+c的位置关系,而且经过课题学习学生已经学会了把复杂问题通过先简单化的这一学习方式。
让学生完成课本P46的表格。
在校对答案时我是这样处理的。先让校对3x2的值,然后再填写3(x-1)2的值,但并不是全部校对,在回答到x=-1时,y=12时,停顿。让学生不急着给出下面的答案,先让学生思考从表格中发现了什么,学生很快的发现第三排的值刚好是把第二排的值向右平移一个单位。由此猜想当x=0时,y=3。然后引导学生验算。发现刚好相等。继续完成表格的第三排的函数值,发现都有相同的特点。
此处的设计是要让学生学会观察,从表格里发现函数图象的平移。
[师]根据表格所提供的坐标,大家去猜想y=3(x-1)2与y=3x2的图象有何关系?
[生]猜想:把y=3x2图象向右平移一个单位就可以得到y=3(x-1)2的函数图象。
[师]请大家根据表格所提供的坐标描点、连线,完成y=3(x-1)2的函数图象。看与我们的猜想是否一样。
通过学生的描点、连线、并观察发现确实符合自己的猜想。经历这样的研究过程学生能形成较为深刻的印象。
教师进行对比教学。继续研究了y=3(x+1)2与y=3x2的图象位置关系。进而研究他们的图象的性质,然后再研究了y=3(x-1)2+2与y=3x2和y=3(x-1)2三者的联系和区别。总结出口诀上左加下右减,位变形不变便于学生记忆。
反思:
函数的教学,尤其是二次函数是学生普遍感觉较为抽象难懂的知识。在教学过程中,除了让学生多动手画图象,加深学生对函数图象的了解,加深他们对函数性质的了解外。更重要的是让学生参与到函数图象和性质的探索中去。要利用一切可以利用的材料来帮助学生理解所学的知识。本节中通过表格上函数值的变化让学生猜想函数图象的位置变化,给学生留下较深刻的印象。然后加以口诀的形式,学生普遍能较好的掌握图象的平移规律。
二次函数教学反思3
二次函数是学生学习了正比例函数,一次函数和反比例函数以后进一步学习函数知识,是函数知识螺旋发展的一个重要环节,二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些简单变量最优化问题的数学模型。和一次函数,反比例函数一样,它也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数,体会函数的思想奠定基础和积累经验。
本节课的具体内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决一些问题。为此,我先带领学生复习了什么是一次函数,然后设计具体的问题情境让学生自己“推导”出一个二次函数,并观察、总结它与一次函数有什么不同。在此基础上,逐步归纳出二次函数的一般解析式:y=ax+bx+c(a,b,c是常数,a≠0)。最后,通过随堂练习巩固二次函数的概念并解决一些简单的数学问题。
我个人以为,本节课的成功之处是:
教学时,通过实例引入二次函数的概念,让学生明确二次函数是一种常见的`函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型,通过学习求一些简单的实际问题中二次函数的解析式,大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述,研究变量之间变化规律的意义。让学生终生受用的思考方法,使学生的思维水平有所提高。这样不仅提高了学生独立发现问题、解决问题的能力,避免学习落入程式化的窠臼,而且也让学生体验到了成功的快乐。
二次函数教学反思4
《6.3二次函数与一元二次函数》的第一课时,主要是用方程的方法研究二次函数图像与x轴交点的个数及交点的求法问题。简而言之,就是借助数形结合的方法解决问题,这是本节课的难点。一方面学生要能够根据二次函数y=ax2+bx+c(a≠0)图像得到一元二次方程ax2+bx+c=0(a≠0)的根,即基本的读图能力;另一方面要能够根据一元二次方程ax2+bx+c=0(a≠0)来判断二次函数y=ax2+bx+c(a≠0)图像与x轴交点的个数,即会依据条件画图的能力。
这两方面对于函数知识的学习都尤其重要,所以我将此作为本节课的重要任务,渗透在探究二次函数与一元二次方程的关系的过程中,并通过训练使学生进一步理解数形结合的思想,掌握运用的方法。作为新授课,尤其要注重知识生成过程的设计。
数学课程标准指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的,这些内容有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”对于教材的内容不能全盘复制,而应该以学生的现实生活为背景,已有的知识积累、学习经验和思维方式为基础,随着课堂活动的不断深入而逐步形成的。因此,本节课的教学中,我借助学生已有的判断一元二次方程ax2+bx+c=0根的情况(a≠0)和二次函数y=ax2+bx+c(a≠0)图象性质的知识基础,将图象与x轴交点的坐标,转化为已知函数值为零,求自变量的值的问题,即解一元二次方程。由“图”过渡到“数”,直观形象,学生易于理解。通过学生自己的思维方式进行自主探索、交流,去发现二次函数y=ax2+bx+c(a≠0)图像与x轴交点的个数和一元二次方程ax2+bx+c=0(a≠0)的根的情况的关系,能够实现课堂学习的自主化,调动学生深层思维的思考,让学生在“再创造”中学习新知,有利于知识的生成,提高课堂的教学效果,体现新课改中将学生作为课堂的主体、学习的'主人的教育教学理念。知识生成过程中,教师做好课堂的引导者和组织者,适时、科学的进行启发、点拨。这就需要认真研读教材,设计合理有效的问题或是问题串,帮助学生“再创造”。
问题的设计要注意前后的呼应和连贯。比如本节课的知识生成是:直接借助根的判别式b2-4ac,来判断二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的情况。这就需要在讲解图象与x轴交点的横坐标即是对应一元二次方程的根后,设计以下的问题有效过渡:(1)二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点有几种情况?(2)一元二次方程ax2+bx+c=0(a≠0)的根有几种情况,借助什么方法来判断呢?这就为后续的归纳做了有效的铺垫,使得新知的生成水到渠成。本节课,在引入问题的设计中做的不够充分,知识的生成没能有效呼应,没有达到预设的课堂效果。我要在以后的课堂教学中,加强对教材的研读,合理把握重难点,在情景引入和知识生成的问题设计上多下功夫,力争使自己的教育教学水平有新的突破。
看过九年级数学二次函数与一元二次方程教学反思的还看了:
1.九年级数学二次函数与一元二次方程同步练习题
2.九年级数学教学工作反思
3.九年级数学实际问题与二次函数同步练习题
4.一元二次方程初三数学单元试题附答案详解
二次函数教学反思5
二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的'数量关系和变化规律的一种非常重要的数学模型。许多实际问题往往可以归结为二次函数加以研究。本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式和它的定义域。在教学中要重视二次函数概念的'形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义。在教学中,我主要遇到了这样几个问题:
1、关于能够进行整理变为整式的式子形式判断不准,主要是我自身对这个概念把握不是很清楚,通过这节课的教学过程,和各位老师的帮助知道,真正达到了教学相长的效果。
2、在细节方面我还有很多的不足,比如,在二次函数的表示过程中,应注意强调按自变量的降幂排列进行整理,这类问题在今后的教学中,我会注意这些方面的教学。
3、在变式训练的过程中要注意思考容量和密度以及效度的关系,注意教学安排的合理性。另外在教学语言的精炼方面我还有待加强。
二次函数教学反思6
前天,教学了《二次函数》的第一课时。课堂上学生活跃的思维、积极的发言、大家争抢着回答问题说明学生的学习是有效的。从中,我感到了教学的魅力,更感到这样的魅力是需要教师尽心准备、创造的。
设计意图:
这节课是在学生学习了一次函数、一元二次方程之后的二次函数的第一节课。从课本的体系来看,这节课的知识目标,学生在原有知识的储备基础上是很容易迁移和接受的。那么这节课还有什么好设计的呢?……重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我意识到这节课的教学重点是“让学生经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”,有了这个认识,一切就变得简单了!
设计流程:
整节课的教学流程概括如下:学生感兴趣的简单实际问题——引出学过的一次函数——复习学过的所有函数形式——设问:有没有新的函数形式呢?——探索新的问题——形成关系式——是函数吗?——是学过的函数吗?——探索出新的函数形式——概括新函数形式的`特点——将特点公式化——形成二次函数定义——练习巩固定义特点——返回实际问题讨论实际问题对自变量的限制——提出新的问题,深入讨论——课堂的小结。
这样一气呵成的设计,感觉上无拖沓生硬之处,最关键的是我认为这符合学生的基本认知规律,让学生亲自经历探索和概括的过程,从而形成新知识。
设计说明:
1、对于实际问题的选择,我将4个问题整合于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得很有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。
2、对于练习的设计,尽量做到每题针对一个问题,并进行及时小结,也遵循了从开放到封闭的原则,达到了良好的效果。
3、最后讨论题的设计和提出,我设计了一个探索性的问题:假如你是果园的主人,你准备多种几棵?这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。这个问题是整节课的一个高潮和精华,对学生的解答,不论对错,不论全面还是有所偏颇,我都给予肯定。事实证明:只要教师给了足够的空间,学生总能从各方面进行思考和解释。
二次函数教学反思7
因教研组活动的安排需要,本周二我作为初四代表出示研讨课,课题为《二次函数的应用——————形如抛物线型》,结合老师的评课反思一下:
我的设计思路是:前置补偿(确定二次函数解析式的方法和思路)———————探索新知(由前置补偿第四小题过渡到问题一,目的在于体会数学与实际问题的转化,并得出确定实际问题中解析式的关键在于有实际意义得出关键点的坐标;然后过渡到没有坐标系的实际问题中,该怎么处理,有学生探索并分情况展示,然后比较过程与结果,增强优化意识。另一方面由实际问题的解决,体会二次函数应用中的数学思想:第一环节,实际意义—→关键点的坐标—→解析式,注意由实际意义到点的坐标转化时的符号,进一步明确解决问题的第二个环节,解析式—→关键点的坐标—→实际意义,注意由坐标到实际意义转化时要取绝对值。)—————活学活用(解决一个隧道问题,目的加强对思路的理解与体会,从本节课上也提高一下难度,但因时间关系,没有完成)。
评课整理如下:
优点:
思路比较清晰,过渡比较自然,题后反思比较到位。
缺点:
1、孙老师:对学生的评价比较模糊,比如有错误的情况下还打个对号。
2、郭老师:解题步骤需加以规范和总结:一建二设三解四答。
3、张老师:知识总结有些地方不太到位,比如,三种不同的情况为什么a的`取值不变?比较三种的优劣时可以从两个方面进行即确定解析式和解决最后实际问题。这样可以更体会更深刻一些。
4、付主任:本节课有宽度,但缺乏深度,容量比较小,学案可以在浓缩一下,可以将问题一和问题二结合起来。
5、齐主任:课堂模式和反映出来的教学理念比较过时,以学生为主体的教育理念体现的不够突出,如果把这节课放在课改之前可能是一堂好课。
自我反思:
1、从郭老师、张老师和孙老师的建议中,我应该加强对课的精细化要求,授课态度要严谨,对学生的一点一滴都要负责任,同时对教材知识的挖掘面面俱到,引领学生对知识能有一个更全面更深入的理解。
2、受付主任建议的启发,可以尝试删掉问题一,由问题二承担起原问题一和问题二的双重作用,即:实际意义确定点的坐标;建立适当的坐标系。可以仍有第四小题引入到问题二(建好坐标系,顶点在原点处),然后实际问题中不可能存在现成的坐标系,引发学生思考坐标系的建立情况,然后加以拓展,并结合解决实际问题体会三种情况的优劣。这样应该可以节省一些时间,但我估计不会太多,最多能节省5分钟,但这或许就可以分析活学活用中的题目了。
自己的体会是,因为这是第一课时,很多东西不可能面面俱到,知识的理解还需要有个循序渐进的过程(或许这也是一个托辞,这就是我们与名师的差距)。与名师相比,我们的课堂容量太小,一方面我们平时的课堂对知识中的思想方法挖掘渗透的太少,学生头脑中的知识不系统,形不成知识体系;另一方面,与本人的知识素养有关系,还需要进一步对教材知识进行深入挖掘,对新的教育理念进行学习,只有准备充足了,才能在课堂上游刃有余。
3、结合齐主任的评课,我站在别人的高度试想了如果是云老师或宋老师来评课,会提出什么意见,我隐约感觉到这肯定不是一节好课,有很大的问题,至于是什么问题我也说不清楚,或许就如齐主任所说的教育理念比较陈腐导致课堂没有推陈出新的亮点,并且我觉得可以做大手术,如果真能请云老师或宋老师来评课的话,我或许就会豁然开朗,而不再这般的迷茫。
二次函数教学反思8
1、上课一开始,我就注重对所学过的平面直角坐标系的有关知识、平面内如何确定点的坐标、以及各象限内点的坐标特征和关于y轴对称点的坐标特征的复习。使学生在画二次函数图象时描点找得很快、很准确。在讲解抛物线的概念时,出示了同学们很感兴趣的姚明投篮的`照片,激发了学生的学习兴趣。为了得出a不同对抛物线图象和性质的影响,在学生画完三个图象后,教师采用“问题导学”式教学方法,设置问题情境,引导学生自主进行观察、发现、归纳、反思等数学活动,得出二次函数y=ax2的图象和性质,在教学中,由学生自己动手,通过列表、描点、连线绘制出二次函数的图象,培养了学生动手动脑的习惯和综合分析归纳的能力。
2、小组合作学习,发现其中的规律。鼓励学生相互交流自己的想法,并说明理由。如在画出图象后,提问学生“我们可以从图中观察到什么”。渗透了数形结合的思想,培养了学生观察、综合分析的能力,增加了学习的自信心和学习的能力。在合作学习中,也培养了他们善于与人交流,合作,肯于负责任的良好个性品质。
3、教师适时地总结、深化,提高认识水平。教师在不断地总结中渗透数学思想方法,抓住时机培养学生思维的深刻性。如这几个基本函数的学习上一节课经历了从实例抽象概括出函数概念,本节课由函数的解析式画出函数的图象,总结出函数的性质,再利用所学知识解决有关问题。在师生的共同讨论中,深化所学知识,培养学生具备反省思维的能力。
4、课堂教学中充分体现了教师和学生的“双主作用”,其中“问题导学”的教学模式起了重要作用。只有教师创造性的教,学生才能创造性地学,一旦学生的学习活动充满创造性的时候,学习过程便充满美的魅力,成为学生积极进取、自我完善的过程。
不足:对y=-x2的读法,教师读的不规范,没有注意小的细节。在总结二次函数性质时,对于开口宽度,我在备课时用a的绝对值来表示的,a为负数时与a为正数时正好相反,一个学生说对了,但不是老师要的答案,我当时没有多想,就说他说的不对。忽略了不同的说法。另外老师提出问题后,给学生去分析、归纳、总结的时间还不够,因此本节课中教师有包办现象。
二次函数教学反思9
课后查看了数学课程标准中对二次函数的要求:
1、通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
2、会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
3、会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。
4、会利用二次函数的图象求一元二次方程的'近似解。
发现并没有提到用顶点式来求二次函数的解析式,而且在后面的几节课的教学中也没有要求用顶点式来求二次函数的解析式。但是我认为新课标所提出的要求应该是对学生的最低要求,它并不反对教师结合学生的实际对教材的重新处理。并且从教学的反馈来看,加上了这3个练习学生能较好的理解本课的教学目标,同时也能对前面所学的二次函数顶点的知识加深印象。适应学生的最近发展区。何乐而不为。
二次函数教学反思10
1.注重知识的发生过程与思想方法的应用
《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。
探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的'根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。
2.关注学生学习的过程
在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。
3.强化行为反思
“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。
4.优化作业设计
作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。《人教版九年级数学下册。
二次函数教学反思11
这节课我是采用先让学生按照学案的提示,自主预习课本,受到课本所给出的分析过程的思维限制,很容易把问题解决了,但没有放手让学生从不同角度去尝试建立坐标系,体会各种情况下所建立的坐标系是否有利于点的表示,没有激发学生学习的热情,没有给予学生以启迪。用二次函数知识解决实际问题是本章学习的一大难点,遇到实际问题学生往往无从下手,学生在解题过程中遇到一个新的问题该如何去联想?联想什么?怎样联想?这与课堂教学过程中老师解题方法的.讲授至关重要,老师在课堂教学过程中应如何引导学生判断、分析、归类。为此我在另一个班采取了以下的教学过程,突出以学生为主体,教师只是引导学生经历分析——观察——抽象——概括——发现新知——解决新知的过程。为了让学生发现方法、领悟方法、运用方法,同时我特意给学生留有一定的思考和交流讨论的时间。
通过两节课的对比,我发现数学的自主学习,不能千遍一律,应针对具体内容采取灵活多变的方法。例如一些简单的计算的课堂可以先让学生自主预习,独立进行探究,完成课本上的填空,发现规律;然后小组共同归纳,总结规律,应用规律学习例题,解决问题。一些需要思维的课堂活需要探讨的课堂,我认为应该利用学案,不让学生看课本,教师引导学生进行探究活动,让学生自己发现关系、规律。总之数学的自主学习课应根据课程内容的不同,采取不同的方法,才会收到较好的效果。
二次函数教学反思12
新人教版九年级数学第二十二章《二次函数》是学生学习了正比例函数、一次函数进一步学习函数知识,是函数知识螺旋发展的一个重要环节,二次函数单元教学反思。二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型。和一次函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。
下面是我通过本单元对《二次函数》教学内容的分类后的几点反思:
“二次函数概念”教学反思
关于“二次函数概念”教学中我的成功之处是:教学时,通过实例引入二次函数的概念, 让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。通过学习求一些简单的实际问题中二次函数的解析式和它的定义域;大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义。绝大多数学生理解了二次函数的概念;掌握了二次函数的一般表达式以及二次项和二次项的系数、一次项和一次项的系数及常数项。
不足之处表现在:少数学生不能从函数本身的实际意义去正确判定一个函数是否是二次函数。
“二次函数的图像及性质”教学反思
关于“二次函数的图象和性质”在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。通过引导学生在坐标纸上画出二次函数y=ax的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导学生要明确取点注意的事项,比如代表性、易操作性。在性质的探究中我让学生观察图像自主探讨当a>0时函数y=ax的性质。当a<0时函数y=ax的性质。探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。通过观察自己画出的两个图象,它们代表函数y=ax的两种情况,找出a的符号不同时他们的相同点、不同点和联系点。绝大多数学生通过观察图像理解并掌握了y=ax图像的性质,紧接着,我用了三节课时间引导学生通过坐标平移探究了y=ax+k、y=a(x-h)、y=a(x-h)+k的图像,绝大多数学生很快掌握了图形平移的规律,理解了平移后图像的性质,教学反思《二次函数单元教学反思》。达到了学习目标中的要求。
不足之处表现在:
1.课堂上时间安排欠合理。学生说的多,动手不够
2. 学生作图速度慢。简单的列表、描点、连线。学生做起来就比较困难,作图中单位长度不准确,描点不准确,图象中的平滑曲线不够平滑
3.合作学习的有效性不够。对于老师提出的问题,各组汇报讨论结果的效果不明显。说明自主、探究、合作的学习方式没有落到实处,学生的创新能力的培养不够。
4.少数学生二次函数图像平移变换能力差。不会进行二次函数图像的.平移变换。
“求二次函数解析式”教学反思
关于“求二次函数解析式”教学中,我通过创设有关待定系数法的问题情境出发,导入求二次函数一般解析式的方法。学生把已知点代入二次函数的一般解析式,很快就得出了三元一次方程组,学生很快就理解了求二次函数一般解析式的方法。然后我通过变式,给出抛物线的顶点坐标和经过抛物线的一个点,引导学生设顶点式的二次函数解析式,学生在老师的点拨下,将已知点代入,很快理解了用顶点式求的二次函数解析式的方法。再通过变式我又引导学生观察抛物线与x轴的交点,启发学生设交点式解析式求二次函数解析式的方法。在整个教学中,环环相扣,充分调动了学生学习的积极性和主动性,所以教学非常流畅,效果不错,目标的达成度较高。
不足之处表现在:
1.一般式的应用中学生的难度在于解三元一次方程组上。
2.学生对求顶点式和交点式的二次函数解析式方法欠灵活
3.变式训练的习题太少导致学生掌握知识不够牢固
“实际问题与二次函数”教学反思
关于“实际问题与二次函数”教学中我通过引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式的表达形式,以及二次函数的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。然后出示问题1,即最大面积问题。教材中的三个探究我分别安排了三节课进行分类教学。我从学生的实际出发,帮助学生解决学习中的困难,启发和引导学生观察二次函数图像,对图像进行分析,得出解决问题的方案。教学每一类实际问题,我都搜集了大量的实例,所以教学重点、难点把握的较准确,同时调动大多数学生学习的积极性和主动性,所以这部分内容学生掌握的比较好。
不足之处表现在:
1.“探究1”中少数学生对于用配方法或公式法求函数的极值容易出错
2.少数学生不会分析题意,不能正确列式求出二次函数的解析式
3.“探究2”少数学生对最大利润问题中的涨价和定价理解有偏差
4.“探究3”少数学生不会灵活建立直角坐标系把实际问题转化为数学问题
以上就是我在教学本单元的感受、体会。因为二次函数知识是函数中的重点也是中考的重点考点,所以针对教学中的不足和学生暴露出的问题,在期末复习中还要制定详实有效的复习计划,通过精选习题再进行最后的强化训练。
二次函数教学反思13
从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。
完成这节课后,静下心来准备写个教学反思。重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!
对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。
对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。
对于最后讨论题的设计和提出,是我在进行了整个一章的`单元备课后发现,我们其实对二次函数的最值问题是不讲的,但是不讲并不代表一点都不会涉及到,其中用到的思想方法还是相当重要的,在图象的观察中也具有了重要的地位,再加上这个问题在进行了前面的实际问题的解答之后是呼之欲出的:多种树——想提高产量——多种几棵好呢?,所以我设计了这个探索性的问题:假如你是果园的主人,你准备多种几棵?注意这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。这个问题的提出是整节课的一个高潮和精华,是学生学完二次函数定义之后,综合利用函数的基本知识,代数式的知识和一元二次方程的知识进行的思考,因而他们的想法和说法,不论对错,不论全面还是有所偏颇,其中都涉及到了重要的数学思想方法,而这些恰恰是非常重要的。事实证明学生的思维真的是非常活跃的,你要你给了足够的空间,他们总能从各方各面进行思考和解释,我也从中看到了他们智慧的火花,这是很令人欣慰的。
二次函数教学反思14
1、常态课,没有太多的做作。
没有制作课件。但若是把要让学生回答的各种性语言,制作成PPT。若用上这种课件,效果应当会更好一些。
2、在一个班讲,变成了两个班合班上。
造成我展示中等生学习情况的不太明显。原第一节课,我是要设计板书和教学环节。可是,因为语文老师不在,我只好合班上课,给学生讲解二次函数的应用题。没有时间多考虑我第二节的公开课了。
3、课越想,越复杂。
这一点可能与上面的矛盾,但还是想把自己的感觉说出来。因为要公开,因为要让别人来看我的课,星期六日,我又在脑子中过了几次教学环节,重点是总结二次函数与一元二次方程的关系,难点是当二次函数与x轴的有交点时,交点的横坐标等于令y=0得一元二次方程的根。
4、越俎代庖的'地方还比较多,即:能让学生自己处理的地方,没有让学生来处理。
本节课只让8个学生回答了问题。从观念上说,我还是不相信学生,认为学生没有自我教育的能力。第一个地方:让江紫露、陈俣希、陈晓娜,解三个方程,江紫露忘了公式了,我赶快板书了公式。实际上,我可以让优生给予帮助,而我却越俎代庖了。第二个地方:总结一元二次方程的根有____种情况时,我怕学生忘了,不会写。更怕公开课怕丢人,也为了节约时间,没有先问学生,就顺手标出。实际上这也是另一种形式的丢丑。今后应相信学生,毕竟学习是他们自己的事。第三个地方:学生用几何画板画三个函数时,陈俣希一个,江紫露则画了两个。我原来设计的应当是三个学生。我为了省事儿,就让一个学生做了两个。没有给哪些会画的差生任何机会。
5、语言的规范、简洁与手语的准确到位还有待提高。
在总结一元二次方程解法时,我临时没计了一个问题,“解一元二次方程________法最好。”显然这是错误的表达,不成熟。应改正:“一元二次方程的解法有哪些?你喜欢哪一种,为什么?”
6、出现了一次较为成功的教学机智。
在总结三个函数与x轴交点的情况时。我写了第一个范式,让张晓青填空。和其他学生讨论这个问题。后来派刘彦涵第二个,郭伟第三个。这两个学生则出现了错误,第一个学生把与x轴的交点、与y轴的交点,给混淆了。第二个学生把方程的无解,直接抄到了函数中,说无解。我抓住了这两点,即时讲解了本节的难点,这样也就较为容易的突破了它,又补充了求函数与y轴的交点的情况,算是一种延伸。
二次函数教学反思15
二次函数是中学数学的重要内容,也是中考的热点,二次函数应用教学反思。其中考试涉及的主要有考查二次函数的定义、图象与性质及应用等。在九年级的教学中,教师就要立足课堂,瞄准中考,研究中考试题。近年来,二次函数的应用题目不断出现在各地中考题中,特别值得一提的是,有些源自课本中的例题或习题原型和变式。在日常教学时,注重对接,为中考做好铺垫,是我对这节二次函数解决实际问题实践探索课的期待。
二次函数应用题型一般情况下,解题思路不外乎建立平面直角坐标系,标出图象上的点的'坐标,求图象解析式,利用图象解析式及性质,来解决最优化等实际问题。一开始我引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式,并说出它们各自的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。结合教材教学内容,呈现习题27.2第5题,让学生分小组去试验探索解决问题。各小组很快就得出三个特殊点的坐标(0,0)(5,4)(10,0),并求出了抛物线的解析式,当然速度有快有慢,第二问,就是求当x=6时y的值,不少学生纷纷举手示意完成,我很高兴,也没细究每个同学的情况。继续按照预定方案,组织学生活动,开始对一道试题进行探究。
如图,有一个横截面为抛物线的桥洞,桥洞地面宽为8米,桥洞最高处距地面6米。现有一辆卡车,装载集装箱,箱宽3米,车与箱共高4.5米,请您计算一下,车辆能否通过桥洞。
对于这个问题,不少学生表情凝重,目光迷惘,思路不畅,不知从何处下手,教学反思《二次函数应用教学反思》。我反复引导,几次提醒按例题的方法,从函数的图象上进行考虑,但就是没有人响应,探究几乎陷于停顿,让我大感意外,超乎我的想象。好在我尚能应付,便提问素有“小诸葛”之称的张文贺,你是怎样思考的?张文贺说,他也知道首先建立平面直角坐标系,但问题是不知道把坐标系原点建在哪里,更不知道卡车是如何穿过桥洞,是靠中间走,还是靠边通过?我一听,才恍然大悟。原来学生的认知和老师想象的不一样,加上生活经验较少,难怪学生会沉默不语。对于坐标系的建立方法,学生面对多种可能的选择,往往束手无策,根本原因就是老师不重视对学生思考水平的研究,导致以老师思维代替学生思维,造成学生思考与实践脱节。这就要求老师要从学生的实际出发,了解学生的学习状况,善于启发和引导,才能较好的达到教学目标。
本节课的设计初衷,原是让学生从具体的生活实践中,感知数学模型,达到从实际问题中抽象出数学模型,并用数学知识解决问题,同时让学生感知和体会一题多变的变式训练,增加对数学解题思想的认识。但在教学时,学生对一些常规知识的缺失突出的暴露出来。如利用三点坐标求二次函数解析式,学生解三元一次方程组感到困难等。
当我充满自信准备进行下一问时,有学生说,我还没得出答案呢?我说,你们小组不是展示过了,怎么你还不会呢?他说,我的解析式设y=ax2+bx+c,我代入得不出来,组长设的和我不一样。我告诉他,其实你用一般式同样可以做的很准,只不过速度稍慢一些,这就需要加强运算练习。下课后我一直在思考,学生越是基础差,那些好的方法他们就越难掌握。学起来既吃力又费气,这就需要在平常加强双基训练,每个学生都必须掌握好基本概念和基本技能。
【二次函数教学反思】相关文章:
二次函数教学反思02-13
二次函数的教学反思05-21
初三二次函数教学反思04-08
二次函数教学反思(通用20篇)09-19
二次函数的图像和性质教学反思04-17
二次函数的说课稿06-22
函数与一元二次方程教学反思03-20
二次函数说课稿06-22