圆锥的体积说课稿
作为一位优秀的人民教师,总归要编写说课稿,认真拟定说课稿,怎么样才能写出优秀的说课稿呢?以下是小编为大家收集的圆锥的体积说课稿,仅供参考,大家一起来看看吧。
圆锥的体积说课稿1
一、说教材:
1、说课内容:
圆锥的体积。(小学六年级数学第十二册第二单元《圆柱和圆锥》中《圆锥》的第二课时)
2、教材简析:
圆锥是小学几何初步知识最后一个单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形。圆锥的体积也是在学习过长方体、正方体和圆柱体积的基础上的又一个延伸,也为以后学生系统学习立体几何打下基础。
3、教学重点:能正确运用圆锥的体积计算公式求圆锥的体积。
教学难点:理解圆锥体积公式的推导过程。
4、教学目标:
(1)知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
(2)能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;
(3)德育方面:引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
二、说教法:
教育家布鲁纳说过:“教学不是把学生当成图书馆,而是培养学生参与学习的过程”。学生是学习的主体,因此我在设计教法时,根据本节课的特点,结合小学生的认知规律,采用以下几种教法:
以谈话法、实验法、观察法为主,以讨论法、练习法为辅,实现教学目标。在教学中,既充分发挥学生的主体作用,又调动学生积极主动地参与教学的全过程。本节课引导并演示了两个实验。
第一、让学生比较圆柱和圆锥是否等底等高。
第二、在“等底等高”的条件下通过装水实验比较圆锥与圆柱的体积。使学生理解“等底等高”的条件下,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥体积的3倍。
通过小组讨论、全班交流,归纳、推导出圆锥体积的计算公式:v=1/3sh。
教学准备:
多媒体课件。
三、说学法
“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。因此我在讲求教法的同时,更重视对学生学法的指导。
1、学生学法:观察法、实验法、探索法。学生在学习圆锥体积公式的推导时,通过操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。
2、在教学中充分发挥学生的主体作用。学生能做的`尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。
四、说教学程序:
本节课我设计了以下五个教学程序:
1、复习旧知,做好铺垫。
利用复习圆柱、圆锥的认识和圆柱的体积公式及其应用,为新知识的迁移做好铺垫。
2、谈话激趣,导入新课。
很多同学都喜欢吃冰淇淋,你们看,冰淇淋的形状是什么样的?你们想没想过一个圆锥筒能装多少冰淇淋呢?这就是这节课我们大家一起探究的内容。(板书课题)
3、实验操作,探究新知。
(1)通过引导,课件演示,学生观察,然后出示三个问题,让学生展开讨论:
问题一:刚才演示的圆柱、圆锥,它们有什么关系?
问题二:将空圆锥装满水往空圆柱里倒,倒了几次才能将空圆柱倒满?
问题三:你有什么发现?
(2)汇报交流:
圆锥的体积是与它等底等高圆柱体积的1/3,圆柱的体积是与它等底等高圆锥体积的3倍。
(3)师生共同归纳公式:圆锥的体积等于和它等底等高的圆柱体积的三分之一,即v=1/3sh(板书公式)
(4)强调:等底等高两个条件缺一不可。
4、尝试练习,巩固提高。
(1)想一想,议一议,说一说。
①、已知圆锥的底面半径r和高h,如何求体积v?
②、已知圆锥的底面直径d和高h,如何求体积v?
③、已知圆锥的底面周长c和高h,如何求体积v?
通过本题的尝试练习,让学生熟练掌握公式。
(2)运用所学知识解决实际问题。(指名学生板演)
(3)学习例3。让学生尝试自己讲,教师加以补充。
(4)反馈练习。
由圆锥体积的实际应用、填表格、判断、拓展题四部分组成,拓展题让学生采用多种解法,同时使学生懂得圆柱削成最大的圆锥,削去的体积是圆锥体积的2倍。
5、看书质疑,布置作业。
①通过这节课的学习,你学到了什么知识?
看书总结和质疑,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生自己去质疑,从而实现课内向课外的延伸。
②布置课堂作业:练习四的有关练习题。
圆锥的体积说课稿2
一,说教材
本节课是西师版义务教育教育课程标准实验教科书六年级数学下册第38页—41页的内容,圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形以及长方体、正方体、圆柱体这三种立体图形的基础上进行研究的。以进一步发展学生的空间观念,为学生学习其它图形知识打下坚实的基础。为了做到有的放矢,我特制定以下
学习目标:
知识与技能目标:
掌握圆锥的体积公式,能运用公式进行计算。
过程与方法目标:
在观察、讨论等活动中探索圆锥的体积公式。
情感态度价值观目标:
体验数学与生活的密切联系,自觉养成合作交流与独立思考的良好习惯。
教学重点:
圆锥体积公式的运用。
教学难点:
掌握圆锥体积公式的推导过程。
突破点:
组织学生动手做实验,引导学生动脑、动手,推导出圆锥体积的计算公式。
二.说教法、学法
教法:根据学生的认知规律、实际水平,以及教学内容的特点,本节课我以自主探究、小组合作学习方式为主,采用情境教学法、启发教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的主体作用,又要调动学生积极主动地参与教学。
学法:采用分组、自主、合作、探究式的学习模式,引导学生主动学习、合作学习、创新学习,学生通过具体实践、操作、讨论、验证、总结、归纳等学生活动,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。
三,课前准备
要求每个学生自制等底等高的圆柱形容器和圆锥形容器各一个。教师准备:等底等高的圆柱体、圆锥体教具,实验用的细沙。
四,教学过程:
1、情境导入,引出课题:(3分钟)
首先我会让每个小组,抽出一个代表给大家说一说在我们生活中哪些地方可以看见圆锥体,这样做不仅给本课的讲解创设了情境,更让学生体验到了从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的'过程。然后,我会追问学生:圆锥的体积到底怎样求呢?这就是我们这节课所要探讨的主要内容,板书课题《圆锥的体积》
2、读讲结合,自主探究(15分钟)
此时我会让学生拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:1,这两个容器有什么共同的特征2。谁的体积更大?3。圆锥的体积是圆柱的多少呢?它们之间有没有一定的数量关系?
问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。
教师只需要做最好总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh
3、运用新知,解决问题(10分钟)
多媒体出示:一个铅锤高6cm,底面半径4cm。这个铅锤的体积是多少立方厘米?
=100.48(立方厘米)
答:这个铅锤的体积是100.48立方厘米。
你能计算出铅锤的体积吗?同时提问一个程度比较好的同学进行演板,演板完毕后,教师不失时机的对其做出评价,同时强调做题格式。然后,进行一题多变:1。改变题中的半径和高的数值2,把半径该为直径3,把半径改为高,从而起到进一步巩固公式的作用
多媒体出示:煤厂有一堆近似于圆锥的煤,煤堆底面周长18.84米,高1.8米。准备用载重5吨的车来运。一次运走这堆煤,需要多少辆车?(1m3煤重1.4吨)
煤堆的底面积:
煤堆的体积:
1.4 16.956÷5≈5(辆)
答:需要5辆车。
学生自主解决,同组交流解题的心得。
4、圆锥在生活中的应用(多媒体展示)(2分钟)
5、运用公式,体会新知(多媒体展示)(5分钟)
6、质疑问难,总结升华(3分钟)
在此环节中,我会问学生“通过这节课的学习,你们有哪些收获,是怎样推导出圆锥的体积的公式的。
7、布置作业(多媒体展示)(2分钟)
圆锥的体积说课稿3
教学内容:
教材第20页例2、练一练。
教学要求:
使学生进-步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积公式解决-些简单的实际问题:
教学重点:
进一步掌握圆锥的体积计算方法。
教学难点:
根据不同的条件计算圆锥的体积。
教学过程:
一、铺垫孕伏:
1.口算。
2.复习体积计算。
(1)提问:圆锥的体积怎样计算?
(2)口答下列各圆锥的'体积:
①底面积3平方分米,高2分米。
②底面积4平方厘米,高4.5厘米。
3.引入新课。
今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。
二、自主探究:
l.教学例2。
出示例题,让学生读题。提问:你们认为这道题要先求什么,再求这堆沙的重量?让学生说说为什么要先求体积,才能求这堆沙的重量?这里底面直径和高的数据怎样获得?指名板演,其他学生做在练习本上,集体订正。
2.组织练习。
(1)做练一练。
指名一人板演,其余学生做在练习本上,集体订正。
(2)讨论练习三第6题:圆柱和圆锥的体积和高分别相等,那么,圆柱的底面积和圆锥的底面积有什么关系?这道题,已知圆柱底面的周长,先求出什么?在怎样?理清思路后
学生做在练习本上。集体订正。
(3)讨论练习三第7题。
底面周长相等,底面积就相等吗?
三、课堂小结
这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算.有时候还可以计算出圆锥形物体的重量。
四、布置作业
1.练习三第5题及数训。
2.出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第167页图制作的圆锥,求出它的体积来。
3.思考练习三第8、9题。
圆锥的体积说课稿4
一、说教材
圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形和长方体、正方体、圆柱体的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积的。内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱和圆锥之间的本质联系、提高几何知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识技能解决实际问题的能力。
教学目标是:
1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。
2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。
教学重点是:掌握圆锥体积的计算方法。
教学难点是:理解圆锥体积公式的推导过程。
二、说教法
根据学生认知活动的规律,学生实际水平状况,以及教学内容的特点,我在本节课以自主探究、小组合作学习方式为主,采用情境教学法,先通过情境感知并进行猜想,再通过操作验证,从中提取数学问题,自己总结归纳出圆锥体积的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的,同时在课堂上多鼓励学生,尤其注重培养学生敢于质疑的精神。
三、说学法
本节课学习适于学生展开观察、猜想、操作、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发创造性的思维火花。
四、说教学流程
为了更好的突出重点,突破难点,我以动手操作、观察猜想、实验求证、讨论归纳法实现教学目标;教学中充分利用几何的直观,发挥学生的主体作用,调动学生积极主动地参与教学的全过程。
1、创设情境,提出问题
出示近似圆锥形的沙堆,接着让学生根据情境提出他们想知道的知识,很多学生都想知道沙堆的体积有多大,从而导出课题“圆锥的体积”。让学生自己提出问题,发现问题,激发了学生探索解决问题的强烈愿望。
2、探索实验,得出结论
A、动手操作
把一个圆柱形木料的上底削成一点,让学生观察削成的圆锥体与原来的圆柱体有什么关系.要求先标出上底的圆心点,不改娈下底面,注意安全。培养学生初步的空间观念和动手操作能力。
B、观察猜想
观察、比较圆柱体与圆锥体。
突破知识点(1)“等底等高”;让学生猜测圆柱体积与它等底等高的圆锥体积的关系。
突破知识点(2)圆锥体积比与它等底等高的圆柱体积小、圆锥体积是与它等底等高的圆柱体积的1/2、圆锥体积是与它等底等高的圆柱体积的1/3;设想求圆锥体积的方法,学生独立思考后交流讨论,给学生提供了联想和交流的空间,培养了他们的创新能力。
C、实验求证
学生动手实验,小组合作探究圆锥体积的计算方法。
(1)用天平称圆锥体和与它等底等高的圆柱体木料的质量;
(2)把圆锥体浸装有水的圆柱形水槽里量、算出体积;
(3)用装沙或装水的方法进行实验。这样的设计,由教师操作演示变学生动手实验,充分发挥了学生的主体作用。
通过学生演示、交流、讨论,得出圆锥体积的计算公式:
圆柱的体积等于与它等底等高的圆锥体积的3倍;
圆锥体积等于与它等底等高的圆柱的体积的1/3.
圆锥体积=底面积×高×1/3
这个环节充分发挥了学生的`主体作用,让学生在设想、探索、实验中发展动手操作能力及创新能力。
3、应用结论,解决问题
(1)以练习的形式出示例1。
例1:一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
通过这道练习,巩固了所学知识。
(2)基础练习:求下面各圆锥的体积。
底面面积是7.8平方米,高是1.8米。
底面半径是4厘米,高是21厘米。
底面直径是6分米,高是6分米。
这道题是培养学生联
系旧知灵活计算的能力,形成系统的知识结构。
(3)出示例2。
在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是6米,高是1.2米,每立方米小麦约重735千克,这堆小麦大约有多少千克?
通过这道练习,培养学生解决实际问题的能力,了解数学与生活的紧密联系。
(4)操作练习。
让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。
4、全课总结,课外延伸。
让学生说说这节课的收获,并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样激发了学生到生活中继续探究数学问题的兴趣。
圆锥的体积说课稿5
一、说教材
(一)、圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。
内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。
(二)、教学目标
1、通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积
2、培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
3、渗透事物间相互联系的辩证唯物主义观点的启蒙教育。
(三)、教学重点、难点和关键
重点:理解和掌握圆锥体积的计算公式。
难点:理解圆柱和圆锥等底等高时体积间的倍数关系。
关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。
二、说教法
以谈话法、实验法为主,讨论法、读书指导法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。
小学阶段学习的几何知识是直观几何。小学生学习几何知识不是严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识。主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做在圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是做在小圆锥里装满沙土往大圆柱中倒的实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系,搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。
三、说学法
1、教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。
2、学生学习圆锥体积公式的推导时,通过自己操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法探索新知识。
四、说教学程序
(一)、导入课题
1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。
回答:(1)已知底面积和高怎样求它的体积?(2)已知底面半径、直径或周长又怎样求它的体积?
这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。
2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积
(二)讲授新知
1、(1)引入新课
引导学生回忆圆柱的体积计算公式是怎样推导的?想:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?
(2)教学圆锥体积公式
首先,学生带着如下三个问题自学课文,(电脑出示):(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?
其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。
第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= 1/3Sh。
第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。
第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
练习:
填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是( )立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是( )立方厘米。
2、教学应用体积公式计算体积(电脑出示题目)
①基本练习。一个圆锥的底面积是25平方分米,高是9分米,它的`体积是多少?(学生独立做在练习本上,教师行间巡视、指导,做完后集体订正)。
②变式练习。只列式不计算。将上题中的已知条件:“底面积是25平方分米”,依次改为“半径是3分米”、“直径是6分米”、“周长是12.56厘米”引导学生想:要求体积,先要求什么?
③小结:要求圆锥的体积,不论已知条件如何改变,都必须先求出底面积。求圆锥的体积,不但不能忘记乘以1/3,还要注意单位统一。
3、 教学例3(出示例3)
例3:工地上有一些沙子,堆起来近似于一个圆锥,测得底面直径是4米,高是1.2米。这堆沙子大约有多少立方米?(得数保留两位小数。)
学生读题、想:要求这堆沙子大约有多少立方米,必须先求什么?(先分组讨论,再尝试练习,个别板演,然后集体评讲。)
通过这道练习,培养学生解决实际问题的能力,了解数学与生活的紧密联系。
4 、操作练习。
让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。
(三)、巩固应用
1、做P27-28练习九的第3、4、7、8题,(学生练习,教师巡视,个别辅导,特别注意对学习有困难的学生的辅导。)
2、思考题:一个长15厘米,宽6厘米,高4厘米的长方体木料,用它制成一个最大的圆锥体,这个圆锥体的体积是多少?(此题给学有余力的学生练习)。
(四)全课总结,课外延伸。
让学生说说这节课的收获,还有什么不懂得的问题?并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样结尾,激发了学生到生活中继续探究数学问题的兴趣。
总之,本节课教学,学生变被动学习为主动获取,掌握了学习知识的方法,真正体现了陶行之先生所说的:“教正是为了不教”的教学思想.
圆锥的体积说课稿6
一、说教材
本节课是北师大版义务教育标准实验教科书六年级数学下册第11页—13页的内容,这节课是在学生对长方体,正方体,圆柱体,和圆锥体的特征都有了初步的认识和了解,并在学习了圆柱的体积的基础上进行学习的,这就为本节课的学习奠定了扎实的基础,同时,也为初中阶段进一步学习几何图形知识做了一个良好的铺垫。为了做到有的放矢,我特制定以下学习目标:
1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。
2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。学习重点是:掌握圆锥体积的计算公式。学习难点是:正确探索出圆锥体积和圆柱体积之间的关系。
二、说教法
本节课我采用的教法是启发式教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的主体作用,又要调动学生积极主动地参与教学。
三、说学法
动手操作法,观察发现法,自主探究法,合作交流法
四、说教学过程
1、复习导入,引出课题:通过复习圆锥的特征、圆柱的体积计算方法引入新课,为学生学习新知做好铺垫。
2、揭示课题,展示目标。
3、以旧引新,探究新知。
通过回忆圆柱体积计算公式的推导过程,提出问题:圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?激起学生探究的欲望。此时我会拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:这两个容器有什么共同的特征?谁的体积更大?圆柱的体积和圆锥体积之间有没有一定的数量关系?问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。
教师只需要做最总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的`体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh(板书,特别的用红颜色粉笔写出等底等高和公式)
4、运用公式,解决问题
通过“算一算”和“试一试”让学生掌握公式的运用。
5、巩固练习,拓展深化,依次练习“练一练”中第1题,第4题和第5题。当然在练习的过程中,要随时关注学生所出现的问题,以便得到及时的解决。
6、质疑问难,总结升华
在此环节中,我会问学生“通过这节课的学习,你们有哪些收获,是怎样推导出圆锥的体积的公式的。
圆锥的体积说课稿7
一、教材分析
本节课是北师大版数学教材六年级下册第一单元第11~12页的内容——圆锥的体积。
这部分内容是发展学生空间观念的内容,也是小学阶段几何初步知识的最后一个内容,是学生在了解和理解了体积和容积的含义基础上,进一步了解圆锥体积或容积;在研究了圆柱体积计算方法的基础上,教材继续渗透类比的思想,再次引导学生经历“类比猜想——验证说明”的过程,进行圆锥体积计算方法的探索。内容包括了解圆锥体积或容积,理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。
二、学生情况
学生已经直观认识了长方体、正方体,掌握了长方体、正方体体积的计算方法,在前面的课时中也已经经历了“类比猜想——验证说明”的探索过程,通过已有的长方体、正方体体积计算方法,学习了圆柱的体积计算方法,在此基础上,让学生再次经历类比探索去学习圆锥体积计算方法。但长方体、正方体和圆柱都是直柱体,类比和猜想圆柱体积计算方法对学生来说比较容易,但是圆锥不是直柱体,因此在探索活动中,需要引导学生提出合理的猜想。学生对这部分内容的掌握,不仅有利于掌握立体图形之间的本质联系,提高几何体知识掌握水平,同时也利于提高运用所学数学知识和方法解决一些简单实际问题的能力。
三、教学目标
根据新课标的具体要求,和本节课的教学内容,结合学生实际制定了以下教学目标。
知识目标:
1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。
2、经历圆锥体积计算公式的推导过程,理解并掌握圆锥体积的计算公式,能正确计算圆锥体积。
3、能运用圆锥体积的计算方法,解决有关实际问题。
能力目标:
培养学生的观察、操作能力,进一步丰富对空间的认识,建立空间观念,发展学生的形象思维,增强学生的应用意识。
情感目标:
能积极参加实验活动,培养学生探索的精神和小组合作的.意识。
四、教学重、难点
重点:圆锥体积的计算。
难点:理解圆锥体积与圆柱体积的关系。
关键:经历“小实验”活动,在活动中发现规律。
五、教法、学法
本节课,在教法和学法上力求体现以下两方面:
1、以讲解法、教具操作法、实验法为主,实现教学目标,在教学中,即充分发挥学生的主体作用,调动学生积极主动地参与教学全过程。
2、教学充分发挥学生的主体作用。通过自己操作实验、观察比较、讨论小结,发现圆柱与圆锥的体积关系,从而推导出圆锥的体积计算公式。
六、教具准备
等底等高的圆柱体和圆锥体容器,不等底等高的圆柱和圆锥。
七、教学环节
环节一复习铺垫
回忆并应用圆柱体积计算公式。通过练习巩固对圆柱体积计算公式的认识,为下面学习圆锥体积计算公式作好铺垫。
环节二探索新知
首先出示教材中的情境图,并提出问题:求这堆小麦的体积,实际上就是求什么?引导学生结合情境来进一步体会圆锥体积的含义。接着直接揭示课题——研究圆锥体积计算方法。
探索圆锥体积计算方法。分为以下几个步骤完成。
步骤一:引导学生回忆圆柱体积计算方法的推导,这样,学生可以利用类比迁移规律,从求圆柱体积的思路、方法中得到启示。然后让学生思考:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?学生很容易根据圆柱和圆锥的底面都是园,来联想到转化成圆柱。
步骤二:放手让学生大胆的猜想如何计算圆锥的体积。学生很容易想到如果是用底面积乘高,计算出来的是圆柱的体积,而直觉会让他们想到圆锥的体积应该比圆柱体积小,但这个时候他们并没有意识到“等底等高”。让学生继续猜想应该是圆柱的几分之几,并说明猜想的依据。在猜想过程中,学生可能得出的结论多样,这个时候针对不同的结论,如:圆锥体积是圆柱体积的二分之一;圆锥体积是圆柱体积的三分之一等。教师随即出示几个大小不同,且不等底等高的圆柱和圆锥让学生仔细观察,比如:大圆锥和小圆柱,或者底面积(高)相同,但是高(底面积)不相同的圆柱和圆锥。通过观察让学生发现高和底面积如果不相同,不能找到与圆锥的关系,因此只有圆柱和圆锥等底等高才便于我们研究。
步骤三:实验活动。在学生形成猜想后,再引导学生“验证说明”自己的猜想。展开分组活动,让学生参与操作实验,用一个空心的圆锥装满水或沙子倒入等底等高的圆柱容器中,看几次能倒满;然后再把圆柱中装满水或沙子倒入等底等高的圆锥容器中,需要倒几次才能倒完,并做好观察记录。让学生初步感知等底等高的圆柱和圆锥体积之间的关系。接着教师用一对等底等高的圆柱和圆锥。
圆锥的体积说课稿8
尊敬的各位领导、老师:
大家上午好!今天,我说课的题目是《圆锥的体积》,下面我将从教材分析、学情分析、教学目标、教学重难点、教法学法、教学过程,板书设计这几个方面展开我的说课。
一、说教材
《圆锥的体积》这部分内容是小学阶段几何知识的重难点部分,在学生学习了立体图形——长方体、正方体、圆柱的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的`基础上进行教学的。
教材突出了探索体积公式的过程,引导学生在装沙和装米的实验基础上进行公式推导。
二、说学情
本节课是学生在学习了长方体、正方体、圆柱这三种立体图形以及认识了圆锥特征的基础上进行的,学生已经具有了一定的“转化思想”和“类推能力”。在展开研究中,学生分组操作,通过量一量、倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。
三、说教学重难点
根据对教材和学情的分析,我制定以下三维教学目标:
知识与技能目标:掌握圆锥的体积公式,并能应用公式解决简单的实际问题。
过程与方法目标:通过观察、操作、猜测、验证等数学活动,发展学生的推理能力。
情感态度与价值观目标:在体积公式的推导过程中,渗透转化的数学思想。
四、说教学重难点
教学重点:理解并掌握圆锥体积的计算方法,并能解决简单的实际问题。
教学难点:理解圆锥体积公式的推导过程。
说教法学法
为了突出重点突破难点,在教法上,我选择以动手操作法为主,以引导发现法、设疑激趣法、多媒体辅助法为辅,让学生全面、全程地参与教学的每一个环节。
学法上:我充分发挥学生的主体作用,以小组合作学习为主要形式,让学生全面参与新知的发生、发展和形成的过程。
说教学过程
课堂教学是学生获取数学知识,发展能力的重要途径,结合“学.学.导.练”的教学模式,我设计了以下四个教学环节:
第一环节:自主学习
第二环节合作学习
第三环节:教师讲导
第四环节:精练强化
五、说板书设计
圆锥的体积=×圆柱的体积=×底面积×高
S=sh
圆锥的体积说课稿9
各位领导、各位同仁:
大家好!
今天我说课的内容是《六年级数学》(人教版)下册第二单元《圆柱和圆锥》中的第二课时《圆锥的体积》。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。
一、说教材
1、教材分析
“圆锥的体积”教学是在学生学习了立体图形——长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。
教材突出了探索体积计算公式的过程,引导学生在装沙或装米的实验基础上进行公式推导。通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验.经历数学化的过程,获得解决问题的方法.
2、学情分析
学生以前学习了长方体、正方体,在此前又学了由曲面和圆围成的立体图形——圆柱,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。通过前一节《圆锥的认识》,学生对圆锥的特征也有了一些了解,对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。
对于六年级的学生来说,绝大多数学生的动手实践能力比较强,有一定的空间观念基础,但公式的推导过程却比较抽象、枯燥,对于他们来说该部分内容是一个难点。同时对于圆锥体积计算的实际运用,从以往的经验判断,学生对3倍的关系难以理解,教师应帮助学生理解。
3、教学目标
知识与技能目标:通过学生参与实验,从而推导出圆锥体积的计算公式,并运用公式计算圆锥的体积;解决一些有关圆锥体积的实际问题。
过程与方法目标:通过实验推导圆锥体积公式的过程,增强学生的实践操作能力,并培养学生观察、比较、分析、总结归纳的学习方法。
情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的.快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。
4、教学重难点
教学重点:理解和掌握公式,能正确运用公式解决实际问题
教学难点:圆锥体积公式的推导过程
5、教具、学具准备
教具:一个圆柱、2个与圆柱等底、等高的圆锥、沙子;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺
二、说教法
在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。在教学中,从:①、让学生测量自制圆柱、圆锥的高(在上一节让学生自己动手制作圆柱、圆锥);②、让学生用自制的等底等高、等高不等底、等底不等高圆柱与圆锥分别装沙实验入手。通过学生自己动手测量、实验操作后总结实验规律。《圆锥的体积》说课稿
通过小组实验、讨论、交流,归纳、推导出圆锥体积的计算公式:v=《圆锥的体积》说课稿sh
在公式运用方面:采取逐步深入的模式,让学生讨论在:①、已知圆锥的高与底面半径;②、已知圆锥的高与底面直径;③、已知圆锥的高与底面周长三种情况下,如何使用公式计算。然后通过让学生列举身边的实例,引入实际运用。
这样,既充分发挥了学生的主体作用,又调动学生积极主动地参与教学的全过程。力求为学生创造一个自主探索与合作交流的环境,引导学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。
三、说学法
以往的教学是教师处于主导地位,学生基本上是处于被动的听讲,被灌输者的被动地位,这样教出来的学生没有灵活性,随机应变的能力差,发现问题,分析问题,解决问题的能力差,学生的情感也低落。
新课改要求:教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。
针对本节,在学法上主要采取:
1、学生在学习圆锥体积公式的推导时,通过自己动手进行操作实验、观察比较、讨论小结,最终推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。
2、充分发挥学生的主体作用:学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。
3、教师提出与所学课程内容有关的恰当合理的问题,让学生在分析、讨论、探索的前提下争取自己解决,对于有一定困难的问题,老师再从中提醒、点拨。从而挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
四、说教学程序
本节课的教学,我安排了6个教学程序:
1、学生自主探索,预习
第一步:回忆《圆锥的认识》
(1)让学生将他们准备的沙子或米拿到老师这里来,我们玩堆沙子游戏。我把它倒在桌子上,缓慢地倒,形成一个近似的圆锥,你们看这是什么形状?
引导学生从沙堆的形状:底面是个圆,有一个顶点,侧面是一个斜面,抽象画出圆锥的图形(边提问、边引导、边画图板书)。
顶点
圆心
高
(2)让学生在图中找出圆锥的顶点、画出圆锥的高。向学生明确:从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示板书这条高)。
(3)图里画的这条高和底面圆的所有直径有什么关系?
(4)怎样测量圆锥高?(让学生根据上述方法使用三角尺、直尺测量自制圆锥的高。)
第二步:回忆圆柱体积的计算公式
画一个与上图圆锥等底、等高的圆柱,指名学生回答,并板书公式:
圆柱的体积=底面积×高
v圆柱=s·h
第三步:课堂展示
(1)我想知道堆起的沙堆的体积怎么办?
(2)能不能也通过已学过的图形来求呢?转化成什么图形最合适?
(3)你感觉它和前面学过的那个图形联系密切?
(4)引导:可以通过实验的方法,得到计算圆锥(沙堆)体积的公式。
2、实验操作
这个环节分两个步骤进行。
圆锥的体积说课稿10
一、说教材:
1、本节教材是义务教育小学数学(人教版)六年制第十二册第三单元《圆柱、圆锥和球》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例1、例2,相应的做一做及练习十二的第3、4、5题。
2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
3、教学重点:能正确运用圆锥体积计算公式求圆锥的体积。
教学难点:理解圆锥体积公式的推导过程。
4、教学目标:
(1)知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
(2)能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;
(3)德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。
学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。
二、说教法:
著名教育家布鲁纳说过:教学不是把学生当成图书馆,而要培养学生参与学习的过程。学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:
1、实验操作法。
波利亚说过:学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。因此,我在学生已经认识圆锥的基础上,设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现圆锥的体积等于和它等底等高的圆柱体积的三分之一。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。
2、比较法、讨论法、发现法三法优化组合。
几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:圆锥的'体积等于与它等底等高圆柱体积的三分之一。然后再让学生讨论假如这句话中去掉等底等高这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了等底等高这个重要的前提条件。
三、说学法
人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展这是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此我在讲求教法的同时,更重视对学生学法的指导。
1、实验转化法。
有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。
2、尝试练习法。
苏霍姆林斯基认为:成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。本节课在教学两道例题时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
四、说教学程序:
本节课我设计了以下五个教学程序:
1、复习旧知,做好铺垫。
(1)看图说出圆锥的底面和高。
(2)一个圆柱体零件,底面积是6。28平方厘米,高是3厘米,它的体积是多少?
这两道题是复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。
2、谈话激趣,导入新课。
六年级下册《圆锥体积》说课稿(1)我们已经认识了圆锥,掌握了圆柱体积公式及其应用,这节课,我们一起来学习圆锥的体积。(板书课题)
(2)看到这个课题你们想学习一些什么?
(3)教师总结,出示学习目标。
这个环节让学生自己说出要学的目标,发挥了学生的主体作用,创设了和谐平等的课堂教学氛围。
3、实验操作,探究新知。
本环节教学是本节几何课成败的关键。为了使学生成为学习的主人,在这个环节中,我尽量给学生有对象可说,有东西可做,有问题可想,有步骤可循,让学生都能主动地操作、观察、比较、分析和归纳。
(1)回忆圆柱体积计算公式推导方法。
(2)动手操作,探究圆锥体积计算的公式。
在实验时,我提出了四个问题,让学生带着问题进行操作:
①比一比,量一量,圆柱和圆锥的底和高之间有什么关系?
②用空圆锥装满沙,倒进空圆柱中,可以倒几次?每次结果怎样?
③通过实验你发现了什么?
④你能用实验说明圆锥的体积不一定是圆柱体积的三分之一吗?
(3)学生汇报实验结果。
(4)教师归纳公式,学生记忆公式。(板书结论和公式)
(5)小结,刚才我们用了实验发现归纳的方法推导出了圆锥的体积公式。
这个环节,让学生动手操作,分析比较,归纳总结,使课堂真正活了起来;最后总结了学法,可以让学生举一反三,触类旁通。
4、尝试练习,巩固提高。
(1)同时出示例1和例2。
例1:一个圆锥形的零件,底面积是19平方厘米。高是12厘米。这个零件的体积是多少?
例2:在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1。2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)
①师出示例题,指名读题,说出已知条件和所求问题;
②分析:例题1直接告诉底面积和高,根据公式可以直接求出来;例题2要求小麦的重量,必须先求什么?
③指名板演。
③集体订正,指出计算圆锥体积时,一定不要忘了乘1/3。
(2)巩固练习,形成技能,完成做一做。
这个环节充分放手让学生自己尝试练习,可以挖掘学生的潜能,让学生体验成功的乐趣。
5、看书质疑,布置作业。
①通过这节课的学习,你学到了什么知识?你用了什么方法学到这些新知识的?还有什么疑问的吗?
看书总结和质疑问难,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生去质疑问难,从而实现课内向课外的延伸。
②布置课堂作业:练习十二的第3、4、5题。
圆锥的体积说课稿11
今天我说课的内容是九年义务教育六年制小学数学(人教版)第十二册第三单元“圆锥的体积”。下面将从教材分析、教法、学法、教学过程等四方面加以说明。
一、教材分析
1、教材的地位和作用
“圆锥的体积”是在学习了圆的周长和面积,长方体、正方体、圆柱体的体积计算,以及初步认识圆锥特征的基础上进行教学的。通过本节课内容的教学,发展学生的操作能力、实践能力,培养创新精神,为今后学生的深层次学习和自主发展打好基础。
2、教学目标
(1)探索并掌握圆锥体积的计算方法
(2)经历观察、猜想、实验等过程,发展学生操作能力、归纳推理能力,培养创新精神。
(3)培养学生身主探索与合作交流的精神,渗透转化的数学思候和方法。
3、教学重点、难点
(1)重点:探索并掌握圆锥的体积的计算方法。
(2)难点:理解圆锥体积计算方法的推导过程。
二、教法
《数学课程标准》明确指出,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学和知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课我主要采用引导发现法|实验操作法,同时借助多媒体等教学手段,增大教学容量,提高教学质量。
三、学法
古人说:“授人之鱼,只供一餐所需;而给人之渔,终身爱用不尽。”素质教育也要求学生装不仅“学会”,更要“会学”。这节课我将指导学生动手实验、合作交流、归纳推理、浓度尝试练习等方法,使学生成为数学学习的主人。
结合教法、学法,教具、学具准备有:
1、多媒体教学软件
2、多个空心圆柱、圆锥容器
3、装有水的水桶
四、教学过程设计
(一)观察发现
1、(电脑出示)一个圆柱体,提问:怎样计算圆柱的体积?
2、(电脑演示)把圆柱的上面逐渐缩小,一直缩小成一点,这时圆柱体就变成了一个圆锥体。提问:你有什么发现和想法?
3、板书课题
本环节由复习提问开始,以旧引新。电脑演示直观形象,动态地展现了变化过程,渗透转化的数学思想和方法。引导学生观察发现,大胆猜想,激发了学生的学习兴趣和强烈的探究欲望,为下面的推导圆锥的体积起到铺垫作用,从而自然导入新课。
(二)探究创新
这个环节分三个步骤进行。
第一步“实验操作”
学生迫切希望通过实验来证实自己的猜想,所以学习兴趣盎然,注意力高度集中,积极投入到实验中。
1、各学习小组拿出准备好的一个圆柱体和A、B、C、D四个圆锥体(其中只有A、D与圆柱等底等高),分别用四个圆锥装满水倒入圆柱中,观察各要几次倒满,并把实验情况做好记录。提示思考“通过实验你发现了什么?
当学生发现A、D两个圆锥所用的次数不定时,设疑:A、D两个圆锥与圆柱有什么关系呢?
学生得出AD两个圆锥与圆柱等底等高。再次设疑:是不是所有的圆锥都是正好用三次就倒满面与它等底等高的圆柱呢?从而进入第二层实验。
2、各学习小组再拿大小不一、等底等高的圆柱与圆锥两对,用两个圆锥装满水后分别倒入与它等底等高的圆柱中,观察各要几次正好倒满。
3、这一步通过实验操作,既能培养学生观察、比较、分析及语言表达能力,更能学会与人合作、与人交流思维的过程和结果。实验没有像教科书那样直接给出一组等底等高的圆柱和圆锥容器,是因为那样操作,学生只是按现有程序演示了一下书本上的结论而已,既无发现,更无创新,反而容易忽视等底等高这一前提条件。没有用沙土而用水做实验,因为沙土颗粒之间有空隙,结果不十分准确。我设计的实验操作过程,与科学研究相类似,注重科学性、全面性,学生操作自由度大,有利于学生创新力的发挥,有利于创新能力的形成。
第二步:推导公式
1、讨论:圆锥的体积与圆柱的体积有什么关系?让学生充分交流后达成共识“圆锥的体积是和它等底等高的圆柱体积的三分之一。
2、圆锥的体积怎样计算?计算公式是什么?根据学生的回答板书:V锥=1/3 SH
本步骤从感性认识上升到理性认识,进一步理解和巩固新知,培养学生严谨的逻辑思维能力,语言表达的条理性、准确性,并突出教学重点。
第三步:尝试解题
1、学生阅读教科书刊42页内容,找出关键句、划出重点词。这样做是为了提高学生的数学阅读能力。
2、放手让学生尝试独立解答例1、例2,指名学生板示解题过程,集体订正。及时把探索到的新知应用于实践,教师从中得到教学信息反馈以便调整教学内容,学生体验到“再创造”与“成功”的喜悦,进一步激发他们学习的自主性。
(三)应用深化
这个环节是把已抽象化了的'概念应用到新折情境中去,是概念的复现和深化,主要以练习形式进行,具体设计如下:
1、基本练习
(1)判断对错。
(2)圆锥体积是圆柱体积的确良1/3。()
(3)圆柱体积等于与它等底等高的圆锥体积的3倍。()
(4)一个圆柱体积是45立方厘米,与它等底等高的圆锥体积是15立方厘米。()
(5)教科书43页“做一做”的1、2题。
2、综合练习
(1)一个圆锥底面周长是31.4厘米,高是12厘米。它的体积是多少立方厘米?
(2)一个底面积是12056平方厘米的圆锥体,这个圆锥体的底面积是多少?
3、思考讨论题
(电脑演示)工地上有一个近似于圆锥的沙堆。你能想办法算出它的体积吗?说说测量和计算的方法。
练习设计从基本题入手,过渡到变式题,发展到综合题,引伸到思考题,符合由浅入深、循序渐进的教学原则。练习过程中训练了学生装的解题能力和技巧,运用所学知识解决实际问题的能力。
(四)回归评价
1、这节课你学会了什么?这里用提问的方式引导学生回顾归纳所学知识内容、学习方法,能强化知识的理解和记忆,促进学生掌握学法。
2、对自己和别人你有什么话要说?学生对自己和别人的学习过程及学习效果进行评价,能强化自信、自立、自强意识,激发自主发展的内动力。
3、布置作业:教科书44页第3题。适量的作业可及时反馈学生学习情况,培养学生良好的学习习惯和品质。
板书设计:(略)
这样的板书设计体现了新知的形成过程,又显示了具体的解题方法,突出教学重点,简洁明了。
圆锥的体积说课稿12
一.说教材
1、说课内容
我今天教学的内容是圆锥的体积,圆锥是小学几何初步知识的最后一个教学单元中的内容,是在掌握了圆的周长、面积和圆柱的体积的基础上进行教学的。通过教学,使学生认识圆锥,掌握圆锥的特征以及各部分的名称。理解求圆锥体积公式的计算公式,会运用公式计算圆锥的体积。圆锥体是人们在生产、生活中经常遇到的形体。教学这部分的内容,有利于进一步发展学生的
2、教学目标:
(1)知识目标:通过观察和实验使学生理解和掌握圆锥特征和圆锥的体积公式,能运用公式正确地计算圆锥的体积。
(2)技能目标:培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
(3)情感态度目标:渗透事物间相互联系的辨证唯物主义观点的启蒙教育。
3、教学重难点
(1)重点:理解和掌握圆锥的特征、体积的计算公式。
(2)难点:掌握圆锥高的测量方法和圆锥体积公式的推导过程。
二.说教法。
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法、设疑诱导法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考、操作,教师适时地演示,化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三.说学法
根据学法指导自主性和差异性原则,让学生在“观察一操作一概括一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。
四.说程序设计:
课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。为了达到预期的教学目标,我对整个教学过程进行了系统地规划,遵循目标性、整体性、启发性、主体性等一系列原则进行教学设计。设计了六个主要的教学程序是:
(一)复习旧知,课前铺垫
(二)提出质疑,引入新课
(三)动手操作,获得新知 。
(四)综合练习,发展思维
(五)课后小结,归纳知识
(六)作业布置,巩固新知
五、说教学过程:
(一)复习旧知,课前铺垫
1.怎样计算圆柱的体积?
指名回答,教师板书:圆柱体的体积=底面积×高.
2.一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
指两名板演,全班齐练,集体订正.
(二.)提出质疑,引入新课
.圆锥有什么特征?它的体积如何计算呢?
今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)
(三)动手操作,获得新知
1.探讨圆锥的体积公式
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:
圆柱——(转化)——长方体
圆柱体积公式——(推导)——长方体体积公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体.你们小组比比看,这两个形体有什么相同的地方?学生操作比较.
(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高”.
(板书:等底等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?为什么?
教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的`圆柱体和圆锥体在体积大小上有什么样的倍数关系.
(3)学生分组做实验.
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了砂子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
在等底等高的情况下.
(老师在体积公式与“等底等高”四个字上连线.)
现在我们得到的这个结论就更完整了。(指名反复叙述公式.)
教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?
得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3.
小结:今后我们求圆锥体体积就用这种方法来计算。
圆锥的体积说课稿13
尊敬的各位评委老师,大家好!今天我说课的题目是《圆锥的体积》。
下面我将从说教材,学情、教学目标、教法学法、教学过程、板书设计六个方面进行说课。
《圆锥的体积》是在学生已经掌握了圆柱体积的计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。
掌握学生的基本情况对于把握和处理教材具有重要作用,接下来我对学情进行分析。六年级学生已有了一定的生活经验,对空间观念也有了一定的了解。从一年级开始就认识了立体图形,五年级学习了长方体、正方体的体积,在前面刚学了圆柱的体积,在此基础上学习圆锥的体积,学生很容易掌握,做到水到渠成。
根据教材的编排特点,学生的认知水平,及已有的生活经验,我制定了以下三个教学目标:
1.使学生理解和掌握圆锥体积的计算方法,并能运用公式解决简单的实际问题。
2.使学生在圆锥体积计算公式的推导过程中进一步理解圆锥与圆柱的联系,培养学生的推理思想。
3.使学生经历猜测、验证的数学发现过程,培养学生乐于学习、勇于探究的数学情感。
通过对教材和教学目标的分析,我认为本课的教学重点是利用圆锥体积公式解决实际问题,难点是掌握圆锥体积公式的推导过程。
本节课我将遵循“教为主导,学为主体,实践操作为主线”的教学原则,采用引导启发,合作交流和自主学习等教学方法。让学生在动手操作、讨论交流中理解知识,在多样化的练习中巩固知识。
为了有效的达成教学目标,我将从创设情境、引入新课,自主探究、掌握新知,巩固练习、拓展延伸,回顾梳理、课堂小结四个环节展开教学:
第一环节:创设情境,引入新课
课前我将创设冰淇淋大卖场的情景,出示圆锥形的两个冰淇淋图片:图片1的冰淇淋底面积较小,高一些,图片2的冰淇淋底面积较大,矮一些。让学生判断哪个冰淇淋大?选择对的同学可以免费品尝一根冰淇淋。让学生猜一猜,激发学生的兴趣,引出“底面积”和“高”两个关键量。接着引导学生思考:要想知道哪个冰淇淋大其实就是求它们的体积,自然引出本节课的主题,揭示并板书课题:《圆锥的体积》。以生活中学生感兴趣的事物设置情景,激发学生好奇心和求知欲,快速切入正题。
第二环节:自主探究,掌握新知
1、大胆猜测,引导分析
首先让学生回顾已经学过的长方体、正方体、圆柱的体积,提出质疑圆锥的体积最有可能与我们学过的哪个立体图形的体积有关?为什么?
接着引导学生从圆锥和圆柱的共同特征入手,它们的底都是圆,从而引出圆锥的体积可能和圆柱的体积有关。学生通过知识的迁移产生猜想,引出圆柱,为实验探究做好铺垫,并且进一步激发了他们对新知的浓烈探索欲望。
2、实验探究,合作学习
首先,我会出示实验要求,明确各组任务。实验活动分为两组,一号学具用来证明等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍,圆锥的体积是圆柱体积的三分之一。二号学具用来对比证明等底不等高、等高不等底、不等底不等高的圆柱和圆锥不存在上面的关系。学生操作实验时,我会巡视指导。
3、全班交流,汇报结果
实验完毕后,各小组汇报展示实验结果发现:一号学具的实验结果是一致的,在空圆锥里装满沙子倒入圆柱里都是三次装满。而二号学具的.实验结果是不一致的,在空圆锥里装满沙子倒入圆柱,出现了不同次数的装满情况,唯独没有出现三次的情况。
接着,提出质疑:为什么各小组一号学具的实验结果都是三次装满,而二号学具的结果却有所不同?学生小组讨论后,全班交流发现:一号学具的圆柱和圆锥都是等底等高的,而二号学具中的圆锥和圆柱有等底不等高的,有等高不等底的,也有不等高不等底的。启发学生思考:是不是所有符合等底等高条件的圆柱和圆锥,都是三次装满?
4、教师演示,加以验证
我会用标准教具装水再试验一次,加以验证,由学生自行总结出实验结果:等底等高的圆锥和圆柱,圆柱的体积是圆锥的三倍,圆锥的体积是圆柱的三分之一.虽然学生通过实验得到了结论,但是我还是会和学生解释一下,用实验得到的结果有可能是不严密的,实验只是一种验证手段,只是现在限于知识水平,还不能严格证明圆锥的体积是等底等高的圆柱体积的三分之一,但数学家已经证明了这一结论,可以直接应用。最后引导学生用字母表示圆锥的体积公式V=?sh,培养学生的符号意识,体会数学的简洁美。通过实验探究的活动,让学生在合作交流中经历“做数学”的过程,让学生体验到学习成功的喜悦。
第三环节:巩固练习,拓展延伸
为了检测本节课目标的达成,我设计以下练习,1、基本练习,及时检查学生对所学知识的理解程度,巩固圆锥的体积公式。2、解决引课中两个冰淇淋体积的问题,首尾呼应。3、综合训练,给学生提供了思维发展的空间,培养学生灵活运用知识解决实际问题的能力。
第四环节:回顾梳理,课堂小结
在这一环节,我将引导学生围绕“通过本节课的学习,你有什么收获?”回顾梳理本节课学习的内容,交流自己的学习心得和学习方法,有利于培养学生的抽象概括能力和语言表达能力,养成良好的学习习惯。
说板书设计
以上呈现的就是我的板书设计,我的设计以提纲式的板书为主,这样可以很直观、很清晰、更明了的将整课内容展示出来,一目了然,便于学生对所学知识的理解和掌握。
结束语:以上就是我说课的全部内容,感谢各位评委老师的耐心倾听!
圆锥的体积说课稿14
各位领导、各位同仁:
大家好!
今天我说课的内容是冀教版小学数学六年级下册第35-36页。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。
一、说教材
1、教材分析
《圆锥的体积》教学是在学生学习了立体图形——长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。
教材突出了探索体积计算公式的过程,引导学生在装沙或装水的实验基础上进行公式推导。通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验,经历数学化的过程,获得解决问题的方法。
2、学情分析
六年级的学生具备以下知识和技能:掌握了长方体、正方体的表面积和体积的含义及其计算方法,并掌握了圆柱的表面积和体积的计算方法,理解了圆柱和圆锥的特征。初步经历了“类比猜想——验证说明”的探索过程。能够小组合作、动手完成一些简单的实践活动。在教学中不光要让学生们知其然,还要让他们知其所以然,即深挖知识间的内在联系。
3、教学目标
知识与技能目标:引导学生通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的`体积,解决有关的实际问题。
过程与方法目标:通过实验推导圆锥体积公式的过程,培养学生的观察,猜测、操作能力,培养学生良好的合作探究意识,引导学生掌握正确的学习方法。
情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。
4、教学重难点
教学重点:理解和掌握公式,能正确运用公式解决实际问题
教学难点:圆锥体积公式的推导过程
5、教具、学具准备
教具:一个圆柱、1个与圆柱等底、等高的圆锥、水;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺、沙子等
二、说教法
在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。在教学中,从:
①、让学生测量比较自制圆柱、圆锥的高;
②、让学生用自制的等底等高、不等高等底圆柱与圆锥分别装沙实验入手。
通过学生自己动手测量、实验操作后总结实验规律。通过小组实验、讨论、交流,归纳、推导出圆锥体积的计算公式:V= Sh,然后通过让学生列举身边的实例,引入实际运用。这样,既充分发挥了学生的主体作用,又调动学生积极主动地参与教学的全过程。力求为学生创造一个自主探索与合作交流的环境,引导学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。
三、说学法
以往的教学是教师处于主导地位,学生基本上是处于被动的听讲,被灌输者的被动地位,这样教出来的学生没有灵活性,随机应变的能力差,发现问题,分析问题,解决问题的能力差,学生的情感也低落。
新课改要求:教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。
针对本节,在学法上主要采取:
1、学生在学习圆锥体积公式的推导时,通过自己动手进行操作实验、观察比较、讨论小结,最终推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。
2、充分发挥学生的主体作用:学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。
3、教师提出与所学课程内容有关的恰当合理的问题,让学生在分析、讨论、探索的前提下争取自己解决,对于有一定困难的问题,老师再从中提醒、点拨。从而挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
四、说教学程序
本节课的教学,我安排了5个教学程序:
1、激趣导入,设疑自探:
通过与学生关于买冰激凌的的对话,引导学生回忆圆柱体积的计算方法,提出圆锥的体积这一概念。
2、探索新知,解疑合探
小组合作,用自制等底等高、不等底等高的圆柱圆锥装沙子进行实验,从而得出等底等高的情况下,圆柱的体积是圆锥的三倍,圆锥的体积是圆柱的三分之一。推导出圆锥的体积公式V = S·h
3、运用公式,质疑再探
引导学生回到导入环节,运用总结出的公式计算圆锥形冰激凌的体积,解决买冰激凌的方案。然后出示圆锥形图片,给出直径和高,有学生自主解答,将知识进一步延伸。
4、课堂练习,拓展运用
由学生回顾整理本节课的主要内容,即圆锥的体积计算方法,同时引导学生加深对乘三分之一的记忆。
5、全课小结,布置作业
通过一些具有一定难度的练习题,使学生能够较好地运用圆柱与圆锥的关系,体会圆柱与圆锥之间只有在等底等高的情况下才有三倍的关系,合理布置本节课的作业,课下加深巩固。
五、说板书
板书内容力求醒目,字母公式使用彩色大字标示:
圆锥的体积
圆柱的体积=底面积×高
V = S·h圆锥的体积=圆柱的体积=底面积×高
圆锥的体积说课稿15
我说课的内容是冀教版教材数学六年级下册第三单元“圆柱和圆锥”的第七课时----《圆锥的体积》,下面说一说我对这节课的想法。
一、说教材
(一)圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。
内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。
(二)、教学目标
1、知识目标:通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积
2、能力目标:培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
3、情感目标:引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
(三)教学重点、难点和关键
重点:理解和掌握圆锥体积的计算公式。
难点:理解圆柱和圆锥等底等高时体积间的倍数关系。
关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。
二、说学情
六年级的学生已经积累了一定的学习经验和方法,如上学期学的圆的面积的推导过程和刚刚经历过的圆柱的体积的推导中所运用的转化的方法,这节课我想学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。
三、说教学过程
口算(题卡)时间3-5分钟。
(一)、回顾旧知,引入新课
1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。(学习圆柱时用的)
问题(1)已知底面积和高怎样求它的体积?(2)已知底面半径、直径或周长又怎样求它的体积?
(这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。)
2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积。
(二)探究新知、推导公式
1、认识圆锥各部分的名称和特征(顶点(一个)、底面(一个圆)、侧面(展开是扇形)高(一条))引导学生猜想侧面展开是什么图形,自己动手验证。试着测量圆锥的高。
(2)教学圆锥体积公式
引导学生回忆圆柱的体积计算公式是怎样推导的?想:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?
首先,教师出示等地等高的圆柱圆锥(课件出示)思考:(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?
其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙子往等底等高的圆柱中倒和在圆柱中装满沙子往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的'体积是圆锥的3倍。
第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= 1/3Sh。
第四、让学生做在小圆锥里装满水往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。
第五、个小组汇报、展示。
第六、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
四、利用新知、解决问题
1、填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是()立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是()立方厘米。
2、教学应用体积公式计算体积(电脑出示题目)
一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?(学生独立做在练习本上,教师行间巡视、指导,做完后集体订正)。
3、只列式不计算。将上题中的已知条件:“底面积是25平方分米”,依次改为“半径是3分米”、“直径是6分米”、“周长是12.56厘米”引导学生想:要求体积,先要求什么?
4、小结:要求圆锥的体积,不论已知条件如何改变,都必须先求出底面积。求圆锥的体积,不但不能忘记乘以1/3,还要注意单位统一。
五、达标测评
1、让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。
2、思考题:一个长15厘米,宽6厘米,高4厘米的长方体木料,用它制成一个最大的圆锥体,这个圆锥体的体积是多少?(此题给学有余力的学生练习
六、全课总结,课外延伸。
让学生说说这节课的收获,还有什么不懂得的问题?并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样结尾,激发了学生到生活中继续探究数学问题的兴趣。
总之,本节课教学,学生变被动学习为主动获取,掌握了学习知识的方法,真正体现了陶行之先生所说的:“教正是为了不教”的教学思想.
【圆锥的体积说课稿】相关文章:
《圆锥的体积》说课稿11-10
《圆锥的体积》说课稿05-25
圆锥的体积应用的说课稿11-23
《圆锥体积》说课稿11-14
圆锥体积的说课稿11-06
《圆锥的体积》说课稿15篇02-16
《圆锥体积》说课稿05-15
《圆锥体积》说课稿(15篇)12-20
《圆锥体积》说课稿15篇12-19