- 相关推荐
基本不等式说课稿
作为一名专为他人授业解惑的人民教师,通常需要用到说课稿来辅助教学,编写说课稿助于积累教学经验,不断提高教学质量。那么优秀的说课稿是什么样的呢?下面是小编为大家整理的基本不等式说课稿,希望对大家有所帮助。
基本不等式说课稿1
各位评委、各位学员大家好,今天我说课的课题是《不等式基本原理》。我将从教材分析、教学设计、教法学法三个方面来说明。
【说教材分析】
1.教材的前后联系及地位作用
本节课是高中新课程必修4第十章第一节第一课时的内容。
本节的内容是继学习等量关系之后,在实际生活中存在的又一新的关系-----不等关系。不等关系在现实世界与日常生活中大量存在,在数学研究和数学应用中与等量关系同样起着重要的作用,它是学习不等式性质及解法的基础,又是构造方程、不等式与函数的基石;因此本节具有重要的奠基作用。
2.课标要求
通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。掌握比较法。
3.教学目标
基于新课标的要求,结合本节内容的地位,我提出教学目标如下:
(1)知识与技能:
①通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景;
②掌握作差比较法的应用。
(2)过程与方法:
①以问题方式代替例题,学习如何利用不等式研究及表示不等式;
②通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法。
(3)情感态度与价值观:
①通过解决具体问题,让学生在学习过程中的感受、体验、认识状况及理解程度;
②注重问题情境、实际背景的设置,让学生体会数学在生活中的重要作用,培养严谨的思维习惯。
③学生通过对问题的探究思考,广泛参与,使学生改变自己的学习方式,提高学习质量。
3教学重点、难点
根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点。
教学重点:理解不等式(组)对于刻画不等关系的意义和价值。理解并应用作差比较法。
根据本节课的内容,以及学生的心理特点和认知水平,制定了教学难点
教学难点:用不等式(组)正确表示出不等关系;作差比较法过程中得变形。
【说教学设计】
一、提出问题、引入新课
问题1:在现实世界和日常生活中,同学们发现了哪些数量关系?你能举出一些例子吗?
(既有相等关系,又存在着大量的不等关系。如两点之间线段最短,三角形两边之和大于第三边,等等。人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。)
问题2: 在数学中,我们用不等式来表示不等关系。下面我们首先来看如何利用不等式来表示不等关系?
【设计意图】问题1:主要是
通过课前的问题展示,让学生感受不等关系与等量关系一样来源于现实世界和日常生活中;随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。
二、思考交流、形成概念
1)用不等式表示不等关系
引例1:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是:
引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p应不少于2.3%,写成不等式组就是--用不等式组来表示
【设计意图】让学生从问题的相同点和不同点中找出列不等关系的方法,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。
三、反馈矫正、巩固提高
. 问题1:某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每提高0.1元,销售量就可能相应减少20xx本。若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?
【设计意图】本题的设计主要是加深学生对不等关系的认识(进一步体现本节的重点)的理解;培养分析问题的能力。在启发诱导的同时,训练了学生观察和概括归纳的能力,同时为下面的例2起铺垫作用,体现认知过程中由简单到复杂,由感性到理性的认知规律。
. 问题2:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种。按照生产的要求,600mm的数量不能超过500mm钢管的3倍。()怎样写出满足所有上述不等关系的不等式呢?
【设计意图】本题的设计是为了进一步使学生更加准确的把握本节知识。突破了如何判断用不等式组正确表示不等式这一教学难点;教学时可先请二位同学(最好是学生自愿)分别上台板演,同学们集体纠正,同时给学生一个解题的规范示例。
.教师将教材的例题和习题整和在一起
【设计意图】本题的设计是为了进一步使学生更加准确的把握本节知识。突破了如何用作差比较法比较大小和证明不等式这教学重点和难点;
探索研究:
a克糖水中有b克糖(a>b>0),若再添上m克糖(m>0),则糖水就变甜了。你能用今天所学的数学知识来解释生活中"糖水加糖会更甜"的现象?
【设计意图】本题的设计是为了让学生体会数学与生活密切联系,体现数学在生活中的重要作用,激发学习兴趣。
四、总结评估、内化结构
【学生活动】
思考讨论得出结论,教师可作适当补充。
1.本节课学习的主要内容是什么?揭示了什么数学思想?
2.通过这节课的学习,你的表现怎么样?你有哪些收获?
【布置作业】
1、必做题:教材后习题以及A组试题
2、课外拓展练习:教师根据学生的实际情况适当补充。
【设计意图】必做题加深对本节内容的理解,并能进行灵活运用,再一次突出本节课的`重点。课外拓展练习供学有余力的学生选做,为学生提供选择和发展的空间,体现了新课标"不同的学生在数学上得到不同的发展"这一基本理念。
【说板书设计】(见课件)
【说教法、学情与学法】
1.说学法
根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
2.说教法
学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
本节教材的特点注重展现知识的形成过程,具有很强的探究性,而且学生参加高中新课程的学习有一段时间了,初步养成了探究习惯和一定的合作交流的能力,绝大多数学生能够积极主动参与数学活动;因此本节课主要采用"引导发现、讨论交流"的教学方法。
3.说教用具与学生用具:
投影仪、胶片、三角尺、刻度尺
【说课综述】
本节课是有一定难度的概念课,我从学生实际出发,照顾到学生的最近发展区,在整个教学过程中采用了"引导发现、讨论交流"的方法来进行教学,最大限度的挖掘学生的潜力;同时学生通过"自主学习"有利于培养学生的创新能力和富有个性化学习方式,从而使学生最大限度发现自己的潜能。
以上即是我对《不等式基本原理》的认识与处理。不妥之处,敬请批评指正,谢谢大家!
基本不等式说课稿2
本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。
接下来出示的问题1从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。
问题2、3的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是很好,在引导学生探究的过程中时间控制的不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
通过问题四让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。
在运用符号语言的过程中,学生会出现各种各样的.问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。
在练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的时候有点耽误时间。
让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。
基本不等式说课稿3
各位评委老师,上午好,我选择的课题是必修5第三章第四节《基本不等式》第一课时。关于本课的设计,我将从以下五个方面向各位评委老师汇报。
一、教材分析
◆本节教材的地位和作用
◆教学目标
◆教学重点、难点
1、本节教材的地位和作用
"基本不等式" 是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完"不等式的性质"、"不等式的解法"及"线性规划"的基础上对不等式的进一步研究。在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。
2、 教学目标
(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。
(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。
(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。
3、教学重点、难点
根据课程标准制定如下的教学重点、难点
重点: 应用数形结合的思想理解不等式,并从不同角度探索基本不等式。
难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。
二、教法说明
本节课借助几何画板,使用多媒体辅助进行直观演示。采用启发式教学法创设问题情景,激发学生开始尝试活动。运用生活中的实际例子,让学生享受解决实际问题的乐趣。 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。让学生爱学、乐学、会学、学会。
三、学法指导
为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导。因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。
四、教学设计
◆运用2002年国际数学家大会会标引入
◆运用分析法证明基本不等式
◆不等式的几何解释
◆基本不等式的应用
1、运用2002年国际数学家大会会标引入
如图,这是在北京召开的第24届国际数学家大会会标。会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车)
正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_
从图形中易得,s≥s’,即
问题1:它们有相等的情况吗?何时相等?
问题2:当 a,b为任意实数时,上式还成立吗?(学生积极思考,通过几何画板帮助学生理解)
一般地,对于任意实数a、b,我们有
当且仅当(重点强调)a=b时,等号成立(合情推理)
问题3:你能给出它的证明吗?(让学生独立证明)
设计意图
(1)运用2002年国际数学家大会会标引入,能让学生进一步体会中国数学的历史悠久,感受数学与生活的联系。
(2)运用此图标能较容易的观察出面积之间的关系,引入基本不等式很直观。
(3)三个思考题为学生创造情景,逐层深入,强化理解。
2、运用分析法证明基本不等式
如果 a>0,b>0 ,
用 和 分别代替a,b.可以得到
也可写成
(强调基本不等式成立的前提条件"正")(演绎推理)
问题4:你能用不等式的性质直接推导吗?
要证 ①
只要证 ②
要证② ,只要证 ③
要证③ ,只要证 ④
显然, ④是成立的`。当且仅当a=b时, 不等式中的等号成立。
(强调基本不等式取等的条件"等")
设计意图
(1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神;
(2)证明过程印证了不等式的正确性,并能加深学生对基本不等式的理解;
(3)此种证明方法是"分析法",在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。
3、不等式的几何解释
如图,AB是圆的直径,C是AB上任一点,AC=a,CB=b,过点C作垂直于AB的弦DE,连AD,BD,则CD= ,半径为
问题5: 你能用这个图得出基本不等式的几何解释吗? (学生积极思考,通过几何画板帮助学生理解)
设计意图
几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。
4、基本不等式的应用
例1.证明
(学生自己证明)
设计意图
(1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习"分析法"证明不等式的过程;
(2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式;
(3)此例不是课本例题,比课本例题简单,这样,循序渐进, 有利于学生理解不等式的内涵。
例2:(1)把36写成两个正数的积,当两个正数取什么值时,它们的和最小?
(2)把18写成两个正数的和,当两个正数取什么值时,它们的积最大?
(让学生分组合作、探究完成)
设计意图
(1)此题目利用基本不等式求最值,包含正用,逆用,体现了基本不等式的应用价值;
(2)强调利用不等式求最值的关键点:"正""定""等";
(3)有利于培养学生团结合作的精神。
练习 :(1)若a,b同号,则
(2)P113 练习1.2
设计意图
巩固基本不等式,让学生熟悉公式,并学会应用。
小结:(让学生畅所欲言)
设计意图
有利于发挥学生的主观能动性,突出学生的主体地位。
作业: 必做题:P 113 A组3、4
选做题:
设计意图
(1)必做题是让学生巩固所学知识,熟练公式应用,强化学生基础知识、基本技能的形成;
(2)选做题达到分层教学的目的,根据学生的实际情况,对他们进行素质教育。
时间安排:引入约5分钟
证明基本不等式约10分钟
几何意义约10分钟
知识应用约15分钟
小结约5分钟
五、板书设计
分析法证明
几何解释
例题讲解
小结
作业
例2
以上是我对这节课的教学设计,恳请各位评委老师指导,谢谢!
基本不等式说课稿4
一、说教材
1、地位和作用
本节课是建立在学生已经具备了一元一次方程、一元一次不等式及二元一次方程组知识的基础上,用函数的观点对它们重新进行分析。这不是简单的复习回顾,而是站在更高的角度进行动态的分析,引导学生从整体中把握部分。其中渗透了数形结合的思想,为后继学习奠定了基础。
2、教学目标
知识与技能目标:
(1)通过函数图象,逐步体会一次函数与一元一次不等式的内在联系,培养学生数形结合的思想。
(2)感知不等式、函数、方程的不同作用与内在联系。
过程与方法目标:
让学生自己根据题意列函数关系式,作出函数图象,并能把函数关系式或函数图象与一元一次不等式联系起来,通过自主交流合作解决问题,充分发挥学生的主体作用。
情感与态度目标:让学生唱主角,老师任导演,增强学生学数学、用数学、探索数学奥秘的愿望,体验成功的喜悦。
3、教学重点、难点
教学重点:理解一次函数与一元一次不等式的关系;
教学难点:利用函数图象确定一元一次不等式的解集。
二、说教法
1、学情分析
我现在所带班级学生整体学习能力处于中等水平,学习新的知识需要较长的理解过程,加上这一学段的学生思维处于由具体形象向抽象概括过渡的时期,对事物的认知停留在单一知识点上。他们可能会画一次函数的图像、会解一元一次不等式,但是很难将数与形结合起来,通过抽象归纳得出二者的内在联系。
2、教学方法
鉴于以上对教材和学情的分析,本节我将采用以启发探究式为主线、讲练结合的教学方法。在教学过程中,配合使用多媒体辅助教学,直观呈现教学素材,从而更好地激发学生的学习兴趣,提高教学效率。
三、说学法
1.学生自主探索交流,思考问题,获取知识,真正成为学习的主体。
2.学生在小组学习中形成合作交流的良好氛围,体验学习的快乐,更好地掌握知识,发展技能。
四、说教学程序
(一)创设问题情境,探究新知
兴趣是最好的老师。为了引起学生的兴趣,本节课我通过游戏引入。
游戏规则:准备好写有各种有理数的卡片若干张,每人每次从中抽取一张,用卡片上的数字乘以2再减去4,最后结果大于零的得1分,等于零的不得分,小于零的扣1分。10次以后,计算每人的得分总和,得分最高者获胜。
教师提问:
你希望抽到写有哪些数字的卡片?你希望哪些卡片被对方抽走?
在以上游戏中,若用x表示卡片上的数字,y表示计算的结果,你能写出y关于x的函数关系式吗?
设计游戏的目的有以下几点:
(1)游戏的内容便于学生列出函数关系式y=2x-4;
(2)通过游戏中得分、不得分、扣分规则的确定来建立函数与方程、函数与不等式的关系,既有对上节课内容的复习巩固,又为本节课的引入创设条件。
(二)探讨归纳,讲解新知
(1)解不等式2x-4>0
(2)观察函数y=2x-4图象,当自变量x为何值时,函数值大于0?
这一环节中,师生共同完成3个任务:教会学生看图、建立数形关系、归纳总结图像法解不等式的步骤。
所以,首先让学生画出引例中函数y=2x-4的图像。从y=0入手,然后分组讨论图像上y>0和y0的部分染色。通过观察让学生发现图像上y>0的部分也就是x轴上方的部分。相应地,y0时相应的x的值。
通过对以上两个问题的解决,使学生认识到解不等式2x-4>0也就是求函数y=2x-4图像上,当y>0时相应的x的取值范围,从而建立数形关系。
最后引导学生归纳总结利用函数图像求不等式解集的步骤,这也是本节课的难点。
(1)把一元一次不等式转化为ax+b>0或ax+b
(2)画出一次函数图象;
(3)一次函数值大于(或小于)0时相应的自变量的取值范围,实质上是一次函数图像上x轴上方的点(或下方的点)对应的自变量的取值范围。
(三)应用新知
例2的设计是让学生进一步熟悉图像法解不等式的一般步骤,这也就是教材上的方法1,要求学生重点掌握。方法2有一定难度,本节课不再重点讨论。
例2:用画函数图像的方法解不等式5x+4
方法1:原不等式化为3x-6﹤0,画出直线y=3x-6。可以看出,当x
方法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10。可以看出,它们的交点的横坐标为2。当x
总结:以上两种方法其实都是把解不等式转化为比较直线上的点的'位置的高低。
从上面的两种解法可以看出,虽然用一次函数图象来解不等式未必简单,但从函数角度看问题,能发现一次函数与一元一次不等式之间的联系,直观的看出怎样用图形来表示不等式的解。这种用函数观点认识问题的方法不是单纯解题,而是加强知识间的融会贯通,用变化和对应的眼光分析问题,对于继续学习数学有着重要作用。
(四)随堂练习
1自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?
(1)y=0;(2)y=-7;
(3)y>0;(4)y
设计意图:本题学生很容易想到代值求解,为了突出数与形的结合,要求学生利用图像解决问题。
2利用函数图象解出x:
(1)6x-4=3x-2;(2)6x-4
设计意图:(1)与(2)形式上虽然只是等式与不等式的区别,但反应在图像上相应的x的取值范围却不同。
(五)小结与作业
1.归纳反思
2.利用一次函数图像求一元一次不等式解集的步骤
作业布置
必做题:习题14.3第3、4题
选做题:已知y1=-x+3,y2=3x-4,求x取得何值时y1>y2?
自我反思
应用新知中的方法2是初三数学中的重要方法,但考虑到学生的情况本节课没有详细讲。实际教学中可以根据学生的接受情况对本节内容进行适当的拓广延伸,尝试与中招考试衔接。这节课涉及到利用函数图像求解集的问题,采用几何画板动态演示的课堂效果会更好。
基本不等式说课稿5
各位评委老师,上午好!我是来应聘高中数学的一号考生,我今天说课的题目是《基本不等式》,下面我将从说教材,说学情,说教法,说学法,说教学过程,说板书设计六个方面展开我的说课,下面开始我的说课!
一、说教材。
1教材的地位和作用:
《基本不等式》是人教版高中数学必修五第三章第四节的内容。本节主要内容是基本不等式的证明和简单应用。它是在学完不等式性质,不等式的解法及线性规划等知识的基础上,对不等式的进一步研究,在不等式的证明和求最值的过程中有着广泛的应用。
2教学目标:
(1) 知识与技能:学生能写出基本不等式,会应用基本不等式解决相关问题。
(2) 过程与方法:学生通过观察图形,推导、证明等过程,培养观察、分析、归纳、
总结的能力。
(3) 情感态度与价值观:学生领略数学的实际应用价值,感受数学学习的乐趣。
3教学重难点:
重点:理解基本不等式的本质并会解决实际问题。
难点:基本不等式几何意义的理解。
二、说学情。
为了更好地实现教学目标,我将对学生情况进行一下简要分析。对于高一年级的学生来说,他们对不等式的知识有了一定的了解,但对基本不等式的理解运用能力不足。这一阶段的学生正处在由抽象思维到逻辑思维的过渡期,对图形的观察、分析、总结可能会感到比较困难。这都将成为我组织教学的考虑因素。
三、说教法。
科学合理的教学方法能使教学效果事半功倍,达到教育学的和谐完美与统一。根据本节课的特点并结合新课改的要求,在本节课中,我将采用讲授法、演示法、引导启发法等教学方法。
四、说学法。
教师的教是为了学生更好地学,结合本节内容,我将学法确定为自主探究法、分析归纳
法。充分调动学生的眼、手、脑等多种感官参与学习,既培养了他们的学习兴趣,又使他们感受到了学习的乐趣。
五、说教学过程。
首先,我将利用多媒体战士20xx年国际数学家大会的会标,让同学们边观察边思考:图上有哪些相等或不等关系?通过展示来激发学生的学习兴趣。接下来是新授环节。
我将会标抽象成几何图形,正方形ABCD 中有4个全等的直角三角形,让学生自主探究,比较三角形面积之和与正方形面积的大小,从而让学生自主推导出不等式a 2+b 2>2ab,再通过引导启发,让学生自己将结论补充完整。接下来,我会提问:你们能给出它的证明吗?给两分钟的时间让学生自主探究。然后用讲授法给出基本不等式的常用形式ab≤a+b(a>0,b>0),并给出具体的'证明过程,强调等号成立的条件。基本不2
等式的证明是本节课的重点,先通过学生的自主探究,再通过我的讲授,学生可以更快地理解这一知识点。接下来是探究基本不等式的几何意义。先由学生自主思考两分钟的时间,然后通过我的讲授,让学生理解基本不等式的几何意义,最后通过几何画板动态演示,让学生更直观地感受基本不等式的几何意义。这样就突破了基本不等式的几何意义这一难点。接下来是巩固练习环节。
这个环节,我将利用两个例题对刚才所讲的知识进行巩固练习。
例1:证明(1)x +1≥2(x >0) x
(2)a +1≥2a (a ≥0)
例2:(1)用篱笆围一个面积为100m的矩形菜园。问矩形长宽各为多少时,所用篱笆最短?
(2)一段长为36m的篱笆围成一个矩形菜园,问长宽各为多少时面积最大?第一个例题不是课本例题,它比课本例题简单,这样循序渐进,有利于学生理解不等式的内涵,此处a、b不仅仅是一个字母,而是一个符号,可以是具体数字,也可以是一个多项式。对于这个例题,多数学生会仿照课本上的思路用分析法进行证明。
第二个例题是利用基本不等式求最值进而解决实际问题,体现了基本不等式的应用价值,而且例题包含了公式的正向应用和逆向应用,锻炼了学生的灵活使用能力。
下面是小结环节。我将让学生用两分钟的时间回顾本节课所学习的内容,并自己总结出本节的知识点。这样不但能巩固本节所学知识,而且能培养学生分析、归纳、总结的能力。22
然后是布置作业。为了在课后对所学的知识进行巩固,我将布置课后习题第2题,第4题作为练习题。
基本不等式说课稿6
各位评委老师,上午好!我是来应聘高中数学的一号考生,我今天说课的题目是《基本不等式》,下面我将从说教材,说学情,说教法,说学法,说教学过程,说板书设计六个方面展开我的说课,下面开始我的说课!
一、说教材。
1、教材的地位和作用:
《基本不等式》是人教版高中数学必修五第三章第四节的内容。本节主要内容是基本不等式的证明和简单应用。它是在学完不等式性质,不等式的解法及线性规划等知识的基础上,对不等式的进一步研究,在不等式的证明和求最值的过程中有着广泛的应用。
2、教学目标:
(1)知识与技能:
学生能写出基本不等式,会应用基本不等式解决相关问题。
(2)过程与方法:
学生通过观察图形,推导、证明等过程,培养观察、分析、归纳、总结的能力。
(3)情感态度与价值观:
学生领略数学的实际应用价值,感受数学学习的乐趣。
3、教学重难点:
重点:
理解基本不等式的本质并会解决实际问题。
难点:
基本不等式几何意义的理解。
二、说学情。
为了更好地实现教学目标,我将对学生情况进行一下简要分析。对于高一年级的学生来说,他们对不等式的知识有了一定的了解,但对基本不等式的理解运用能力不足。这一阶段的学生正处在由抽象思维到逻辑思维的过渡期,对图形的观察、分析、总结可能会感到比较困难。这都将成为我组织教学的`考虑因素。
三、说教法。
科学合理的教学方法能使教学效果事半功倍,达到教育学的和谐完美与统一。根据本节课的特点并结合新课改的要求,在本节课中,我将采用讲授法、演示法、引导启发法等教学方法。
四、说学法。
教师的教是为了学生更好地学,结合本节内容,我将学法确定为自主探究法、分析归纳法。充分调动学生的眼、手、脑等多种感官参与学习,既培养了他们的学习兴趣,又使他们感受到了学习的乐趣。
五、说教学过程。
首先,我将利用多媒体战士20xx年国际数学家大会的会标,让同学们边观察边思考:图上有哪些相等或不等关系?通过展示来激发学生的学习兴趣。接下来是新授环节。
我将会标抽象成几何图形,正方形ABCD中有4个全等的直角三角形,让学生自主探究,比较三角形面积之和与正方形面积的大小,从而让学生自主推导出不等式a2+b2>2ab,再通过引导启发,让学生自己将结论补充完整。接下来,我会提问:你们能给出它的证明吗?给两分钟的时间让学生自主探究。然后用讲授法给出基本不等式的常用形式ab≤a+b(a>0,b>0),并给出具体的证明过程,强调等号成立的条件。
基本不等式的证明是本节课的重点,先通过学生的自主探究,再通过我的讲授,学生可以更快地理解这一知识点。接下来是探究基本不等式的几何意义。先由学生自主思考两分钟的时间,然后通过我的讲授,让学生理解基本不等式的几何意义,最后通过几何画板动态演示,让学生更直观地感受基本不等式的几何意义。这样就突破了基本不等式的几何意义这一难点。接下来是巩固练习环节。
这个环节,我将利用两个例题对刚才所讲的知识进行巩固练习。
例1:证明(1)x+1≥2(x>0)x
(2)a+1≥2a(a≥0)
例2:(1)用篱笆围一个面积为100m的矩形菜园。问矩形长宽各为多少时,所用篱笆最短?
(2)一段长为36m的篱笆围成一个矩形菜园,问长宽各为多少时面积最大?第一个例题不是课本例题,它比课本例题简单,这样循序渐进,有利于学生理解不等式的内涵,此处a、b不仅仅是一个字母,而是一个符号,可以是具体数字,也可以是一个多项式。对于这个例题,多数学生会仿照课本上的思路用分析法进行证明。
第二个例题是利用基本不等式求最值进而解决实际问题,体现了基本不等式的应用价值,而且例题包含了公式的正向应用和逆向应用,锻炼了学生的灵活使用能力。
下面是小结环节。我将让学生用两分钟的时间回顾本节课所学习的内容,并自己总结出本节的知识点。这样不但能巩固本节所学知识,而且能培养学生分析、归纳、总结的能力。
然后是布置作业。为了在课后对所学的知识进行巩固,我将布置课后习题第2题,第4题作为练习题。
基本不等式说课稿7
今天我说课的内容是:一元一次不等式与一次函数。它是北师大版八年级下册第一章“一元一次不等式与一元一次不等式组”中的第五节内容。下面,我从教材理解、学情分析、设计思路、教学流程四个方面谈谈自己对这节课的思考和设计。
一、教材理解
一元一次不等式与一次函数是在前面学生学习了一元一次方程、一元一次不等式、一次函数的基础上安排的。本节内容的重点是利用一次函数的图象解一元一次不等式,它既是对一元一次方程、一元一次不等式、一次函数的进一步巩固与深化,又是后续学二次函数等知识的基础和铺垫,起着承前启后的重要作用。同时本节教材承担着“引导学生初步体会不等式、方程、函数之间联系和区别”的章节目标,它是本章中的一个难点,渗透着数形结合的数学思想,反映了“事物是普遍联系”的哲学规律。本节内容的学习,对于启发学生数学思维,开拓学生的数学视野,提高学生的数学能力有着十分重要的意义。
依据课标要求和教材内容,我确定本节的教学目标是
1、通过观察图象,使学生初步掌握利用一次函数图象来解一元一次不等式的方法。
2、通过学生合作探究,初步体会一元一次不等式、一元一次方程、一次函数之间的内在联系。
3、培养学生数形结合的意识和解决实际问题的能力,使学生充分感受数学的价值,进一步激发学习数学的热情。
二、学情分析
我校是一所山区乡镇初中,办公条件相对较差,为了适应课堂教学改革的需求,近期学校在每个教室三面墙体装上黑板,并用竖线分成30小块,每块黑板都是学生课堂交流展示的平台,为学生创造了极大的展示空间。
教室内学生的座位分布以小组为单位,6人课桌相并,相对而坐,好、中、差不同层次学生相互搭配,组成6人学习小组,便于课堂上合作交流,互帮互学,互相促进。经过近段来的实践引导,学生的积极性大为提高,主动性明显增强,良好的学习习惯正在逐步养成。小组内部及小组之间讨论热烈,学生思维活跃,敢想敢说,课堂氛围浓,教学效果好。
在学习本节内容之前,学生已经能够熟练运用代数方法解出一元一次方程和一元一次不等式;能准确根据函数关系式画出图象,并能从图象中分析出变量之间的关系;能找出简单实际情境中的`变量及相互关系。这些已有的知识和经验对于完成本课时目标十分重要,但由于本节内容综合性强,并且比较抽象,再加上学生基础、能力有限,所以学生对本节内容的掌握估计有一定的困难。
三、设计思路
根据教材特点和学生实际,以及数学课程标准中提出的三个方面的教学实施建议:
1、让学生经历数学知识的形成与应用过程;
2、鼓励学生自主探索与合作交流;
3、注重数学知识之间的联系,提高解决问题的能力等要求,同时结合初中生好奇心、求知欲强等特点,为了充分体现学生的主体作用,培养学生自主学习的精神,首先在新课导入时用简明的引言,点明课题,激发学生学习本节知识的兴趣,调动学生参与学习的积极性;
其次在课堂学习中,运用新课程提倡的“自主探究、合作交流”的学习方式,引导学生主动地从事观察、猜测、推理、交流等教学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。为此,本节课的教学,我将采用“提纲导学——交流展示——训练提升——学习评价”四环节主体参与式教学方法。
四、教学流程
本节课的教学流程分为提纲导学、交流展示、训练提升、学习评价四个部分。
1、提纲导学
教师用简练的引言,设置疑问,创设情境,导入新课。然后向学生发放提纲导学活页,其内容包括两个部分:一是学习目标,二是导学习题。出示教学目标的目的是为了让每个学生都明确本节课的学习任务,增强学习的目的性和方向性;导学习题是对教材内容的深度设计和处理,它紧扣课时目标,体现了知识由浅入深的层次性,符合学生的认知规律。同时问题以填空的形式呈现,更加具体,便于学生操作。
学生明确目标后,结合课本20页上方的函数图象,自学完成导学习题。时间预设为8分钟。自学中遇到的疑难问题在小组中合作探究解决,教师深入小组指导自学。
2、交流展示
这个环节是在自学的基础上,让学生充分交流展示个人或小组的自学成果。时间预设为15分钟。具体过程为:每个小组至少两人在黑板上展示导学习题的自学成果,教师要引导学生主动参与,鼓励学生积极参与,保障全班三分之二以上的学生参与展示,力争黑板不留空白,让学生在参与中彰显自我,在展示中提高自我。没有在黑板上展示的同学,也要积极融入展示活动,可以随时上前标出展示中的“错误”,并写出自己的意见。书面展示结束后,教师根据学生的作答情况,有策略地请出多名学生向全班同学讲解自己解题的思路和过程,在讲解中,全体同学参与互动,有疑则问,有问则答,同时从思路、表达等方面对学生进行评价。
前4个问题的设计主要是为了完成“用一次函数图象解一元一次方程和一元一次不等式”的课时目标,它是课时重点,所以,自学时间要充裕,展示活动要充分,交流讲解要全面。第5个问题是本节的教学难点,学生很难独立完成,教师要组织学生互动探究,鼓励学生迎难而上,同时点拨释疑,引导思路,帮助学生自己逐步得出结论,并展示在黑板上。教师强调后,根据学生的学情分层提出要求。
3、训练提升
通过前两个环节的实施,学生已经初步完成了本课时的学习目标,为了巩固学习成果,检测课堂学习效果,所以设计了这个环节。本环节包括练习和讲解两个环节,时间预设为练习10分钟,讲解8分钟。训练的题目为课本“想一想”、“做一做”中的问题。以上问题由学生独立完成,每组抽查两名学生在黑板上分别完成。提前完成的学生由教师检查评价后,做课后作业,同时承担帮助组内学困生完成训练题的任务。待全班学生基本完成后,抽查3名以上学生到黑板上讲解。问题二有多种解题思路,教师要引导学生发散思维,用不同的方法解决问题,体会一次函数、一元一次不等式、一元一次方程之间的联系和作用,为下一课时的学习做好铺垫。
4、学习评价
教师对课堂目标的完成情况以及学生的学习情况、学习状态、参与程度、知识掌握程度进行课堂学习综合评价。这一个环节不是孤立存在的,它贯穿于课堂教学的全过程,教师在每个环节,都要对学生学习活动进行适时评价,对表现积极、学习自主的学生进行表扬,对稍差的学生提出改进的办法,促使他们进一步掌握学习数学的方法,激励全体同学高效率地参与课堂学习,生成知识,提高能力,从而有效地完成课时目标和任务。
基本不等式说课稿8
尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《基本不等式》。
接下来我将从教材分析、学情分析、教学重难点、教学方法、教学过程等几个方面展开我的说课。
一、说教材
我认为要真正的教好一节课,首先就是要对教材熟悉,那么我就先来说一说我对本节课教材的理解。《基本不等式》在人教A版高中数学必修五第三章第四节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。
二、说学情
教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。
三、说教学目标
根据以上对教材的分析以及对学情的把握,结合本节课的知识内容以及课标要求,我制定了如下的三维教学目标:
(一)知识与技能
掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。
(二)过程与方法
经历基本不等式的推导与证明过程,提升逻辑推理能力。
(三)情感态度价值观
在猜想论证的过程中,体会数学的严谨性。
四、说教学重难点
并且我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:基本不等式的形式以及推导过程。而作为高中内容,命题的严谨性是必要的,所以本节课的教学难点是:基本不等式的推导以及证明过程。
五、说教法和学法
那么想要很好的呈现以上的想法,就需要教师合理设计教法和学法。根据本节课的内容特点,我认为应该选择讲授法,练习法,学生自主思考探索等教学方法。
六、说教学过程
而教学方法的具象化就是教学过程,基于新课标提出的教学过程是师生积极参与、交往互动、共同发展的过程。我试图通过我的教学过程,打造一个充满生命力的课堂。
(一)新课导入
教学过程的.第一步是新课导入环节。
我先PPT出示的是北京召开的第24届国际数学家大会的会标,会标是根据我国古代数学家赵爽的弦图设计的。
提问:你能在这个图中找到不等关系么?
引出课题。
通过展示会标并提问的形式,一方面可以引发学生的好奇心和求知欲,激发学生的学习兴趣;另一方面直入课题,可以很好的过渡到今天的主题内容:推导基本不等式。
(二)新知探索
接下来是教学中最重要的新知探索环节。
(1)通过导入的问题,学生思考:通过赵爽弦图推可以发现哪些不等关系呢?
学生小组探究:利用赵爽弦图推导出基本不等式。
之后请学生把证明过程进行板书:
(2)“探究”,几何证明。
分析法是从结果入手,由果索因;几何法是由几何中的不等关系,进行证明。此类不等式的证明分析法理解简单,几何法稍难。学生通过两种证明过程,加深基本不等式的理解,还练习了证明方法。
至此本节课的主要教学内容已经完成,学生在我层次性问题的引导下,一步步通过自己的思考和探索,发现基本不等式,通过不同的方法证明了基本不等式。重点得以突出,难点得以突破。
(三)课堂练习
当然一节课只得出结论还是不够的,作为一节数学课要及时对知识进行应用。所以我设计了如下两道课堂练习:
(2)一段长为36m的篱笆围成矩形菜园,问这个矩形的长、宽各为多少时菜园面积最大?最大面积是多少?
这样的问题能够兼顾到本节课的所有主要内容,并且问题具有层次性,能让学生初步感知基本不等式应用中“积定和最小,和定积最大”的规律,为后续基本不等式的应用做好了铺垫,利于学生的思维发展。
(四)小结作业
在课程的最后我会提问:今天有什么收获?
引导学生回顾:基本不等式以及推导证明过程。
本节课的课后作业我设计为开放性问题:思考还有什么方法能够证明基本不等式?可以利用书本资料,也可以上网查阅资料。
这样的作业设置能够有效激发学生思考,不限制学生的思维,真正做到以学生为主体,让学生学会自主学习。
基本不等式说课稿9
《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:
本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:
知识与技能:
1. 感受生活中存在的不等关系,了解不等式的意义。
2. 掌握不等式的基本性质。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
重点:不等式概念及其基本性质
难点:不等式基本性质3
教法与学法:
1. 教学理念: “ 人人学有用的数学”
2. 教学方法:观察法、引导发现法、讨论法.
3. 教学手段:多媒体应用教学
4. 学法指导:尝试,猜想,归纳,总结
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。
下面我将具体的教学过程阐述一下:
一、创设情境,导入新课
上课伊始,我将用一个公园买门票如何才划算的例子导入课题。
世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?
(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)
紧接着进一步提问:若人数是x时,又当如何买票划算?
二、探求新知,讲授新课
引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。
接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。
(1)a是负数;
(2)a是非负数;
(3) a与b的和小于5;
(4) x与2的差大于-1;
(5) x的4倍不大于7;
(6) 的'一半不小于3
关键词:非负数,非正数,不大于,不小于,不超过,至少
回到引入课题时的门票问题120<5x,我们希望知道X的取植范围,则须学习不等式的性质,通过性质的学习解决X的取植
难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。
反馈练习:用一个小练习巩固三条性质。
如果a>b,那么
(1) a-3 b-3 (2) 2a 2b (3) -3a -3b
提出疑问,我们讨论性质2,3是好象遗忘了一个数0。
引出让学生归纳,等式与不等式的区别与联系
三、拓展训练
根据不等式基本性质,将下列不等式化为“<”或“>”的形式
(1)x-1<3 (2)6x<5x-2 (3)x/3<5 -4x="">3
(1)x—1<3
(2)6x<5x—2
(3)x/3<5—4x="">3
再次回到开头的门票问题,让学生解出相应的x的取值范围
四、小结
1、新知识
一个数学概念;两种数学思想;三条基本性质
2、与旧知识的联系
等式性质与不等式性质的异同
五、作业的布置
以上是我对这节课的教学的看法,希望各位专家指正。谢谢!
“让学生主动参与数学教学的全过程,真正成为学习的主人”。
基本不等式说课稿13
一、教材分析
1、教材所处的地位和作用:
不等式基本性质是八年级下册第二章第二节内容。不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。本节课是建立在学生已认识了不等关系基础上来学习的,也是为进一步学习解不等式及应用不等关系解决实际问题的重要依据,因此本节课内容在不等关系这一章占有重要位置。本节课的教学指导思想是从学生实际认知水平及知识结构出发,让学生自主获取知识。
二、教学目标
(1)知识与技能
1、经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。
2、掌握不等式的基本性质,并能初步运用不等式的基本性质把比较简单的不等式转化为“x>a”或“x<a”的形式。(2)过程与方法:
1.经历探索不等式基本性质的过程,体验数学学习探究的方法
2.通过观察、类比、猜想、验证、归纳总结等数学学习活动过程,发展合理的推理和初步论证能力(3)情感态度与价值观:
1.学生在探索过程中感受成功、建立自信,增进学习数学的兴趣。
2.体验在研究过程中创造的快乐,并学会与人交流合作养成良好的人格品质
3、重点、难点及关键
重点:不等式基本性质的探索及应用难点:不等式的基本性质三的探索及其应用
三、教法学情分析:
1、学生在学习一元一次方程、二元一次方程组和一次函数的基础上,积累了一定的经验,本节课主要采用类比等式的方法进行不等式的探究教学,这样不仅有利于学生掌握不等式的基本性质,而且可以使学生体会知识之间的内在联系,整体上把握知识,发展学生的辩证思维。
2、始终坚持学生为主体,教师为主导的教学方法,通过教师的启发,设问,引导学生自主探索、合作交流,师生充分互动,这样才能将学生推到学习的前沿,才能充分发挥学生的学习主体性和主观能动性。
3、在探索不等式的性质时为了避免简单的“模型化”,主要采用引导学生观察、类比、猜想、验证、总结概括的方法,发展学生分析问题和解决问题及初步论证问题的能力,关注学生知识的形成和学习能力的提高。
学法指导
1、观察猜想
2、类比验证
3、探究合作
4、抽象概括
5、总结归纳
6、数学表示
四、说教学过程
最后我来具体谈谈这一堂课的教学过程:
(一)、回顾交流,指导观察
教师提问:同学们还记得等式的性质吗?学生举手回答,交流联想。投影显示:等式的性质
设计意图:通过回顾等式的性质,类比等式的性质,为探索不等式的性质做好铺垫,并且从学生已有的数学经验出发,建立新旧知识之间的联系,培养学生梳理知识体系的习惯。
(二)、知识探究
1、用“﹥”或“﹤”填空,并总结其中的'规律:
(1)5>3, 5+2 3+2 , 5-2 3-2 ;
(2)–1、>(2)
不等式的性质1不等式的两边加(或减)同一个数(或式子),不等号的方向不变.字母表示为:如果a>b,那么a±c > b±c设计意图:通过一组精心设计的填空题,让学生观察有限个不等式的变化,发现并归纳不等式的性质1,进一步培养学生得抽象概括能力及合情推理能力。让学生用语言概括出结论,培养学生的数学语言表达能力及抽象概括能力。
2、继续探究,接着又出示(3)、(4)题:
(3) 6>2, 6×5 2×5 , 6×(-5)2×(-5); (4) -2
当不等式的两边同乘以一个正数时,不等号的方向不变;当不等式的两边同乘以一个负数时,不等号的方向改变。
(1)3a 3b;(2)a-8 b-8(3)-2a -2b(4)2a-5 2b-5(5)-3.5a+1 -3.5b+1设计意图:由浅入深的练习,进一步帮助学生理解不等式的性质,为下面利用不等式性质解不等式作准备。 (五)、例题讲解及运用巩固(多媒体展示)例题:将下列不等式化成x>a或x<a的形式(1)x-5>-1(2)-2x>3类比等式基本性质的应用,师生共同板演完成(注意有意强化在(2)题的结果中不等号的方向为什么会改变?)
2、尝试练习一(学生板演)(要求同例题)(1)x-1>2(2)-x<3
(3)x≤3
3、巩固练习二(要求同例题)小组内交流并订正
(1)x+3<-1
(2)3x>27(3)- 6x>5(4)5x<4x-6(通过练习,进一步巩固性质,突出重点)通过(3)(4)的求解过程,类似于解方程两边都除以未知数的系数(未知数系数化为1),解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向。设计意图:让学生经历运用知识解决问题的过程,给学生获得成功体验的空间,激发学生得积极性,建立学好数学的自信心。
4、抢答提升,强化性质
已知x>y,下列不等式一定成立吗?
基本不等式说课稿14
我今天说课的题目是《不等式的基本性质》,主要分四块内容进行说课:教材分析;教学方法的选择;学法指导;教学流程。
一、教材分析:
1.教材的地位和作用
本节课的内容是选自人教版义务课程标准实验教科书七年级下第九章第一节第二课时《不等式的基本性质》,这是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。
2.教学目标的确定
教学目标分为三个层次的目标:
⑴知识目标:主要是理解并掌握不等式的三个基本性质。
⑵能力目标:培养学生利用类比的思想来探索新知的'能力,扩充和完善不等式的性质的能力。
⑶情感目标:让学生感受到数学学习的猜想与归纳的思维方式,体会类比思想和获得成功的喜悦。
3.教学重点和难点
不等式的三个基本性质是本节课的中心,是学生必须掌握的内容,所以我确定本节的教学重点是不等式三个基本性质的学习以及用不等式的性质解不等式。本节课的难点是用不等式的性质化简。
二、教学方法、教学手段的选择:
本节课在性质讲解中我采取探索式教学方法,即采取观察猜测---直观验证---托盘实验---得出性质。使学生主动参与提出问题和探索问题的过程,从而激发学生的学习兴趣,活跃学生的思维。为了突破学生对不等式性质应用的困难,采取了类比操作化抽象为具体的方法来设置教学。整节课采取精讲多练、讲练结合的方法来落实知识点。
三、学法指导:
鉴于七年级的学生理解能力和逻辑推理能力还比较薄弱,应以激励的原则进行有效的教学。鼓励学生一种类型的题多练,并及时引导学生用小结方法,克服思维定势。
例题讲解采取数形结合的方法,使学生树立“转化”的数学思想。充分复习旧知识,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。
四、(主要环节)教学流程:
1.创设情境,复习引入
等式的基本性质是什么?
学生活动:独立思考,指名回答.
教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.
请同学们继续观察习题:
观察:用“”或“”填空,并找一找其中的规律.
(1)55+2____3+2,5-2____3-2
(2)–1,-1+2____3+2,-1-3____3-3
(3)6>2,6×5____2×5,6×(-5)____2×(-5)
(4)–2(-2)×6____3×6,(-2)×(-6)____3×(-6)
学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.
五、教法说明
设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.
不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.
学生活动:观察思考,猜想出不等式的性质.
教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”
师生活动:师生共同叙述不等式的性质,同时教师板书.
不等式基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?
学生活动:观察③④题,并将题中的5换成2,-5换成一2,按题的要求再做一遍,并猜想讨论出结论.
六、教法说明
观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?为什么?
师生活动:由学生概括总结不等式的其他性质,同时教师板书.
不等式基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.
不等式基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变.
师生活动:将不等式-2<3两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.
学生活动:看课本第124页有关不等式性质的叙述,理解字句并默记.
强调:要特别注意不等式基本性质3.
实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.
学生活动:思考、同桌讨论.
归纳:只有乘(或除以)负数时不同,此外都类似.
(1)如果x-54,那么两边都可得到x9
(2)如果在-78的两边都加上9可得到
(3)如果在5-2的两边都加上a+2可得到
(4)如果在-3-4的两边都乘以7可得到
(5)如果在80的两边都乘以8可得到
师生活动:学生思考出答案,教师订正,并强调不等式性质的应用.
2.尝试反馈,巩固知识
请学生先根据自己的理解,解答下面习题.
例1 利用不等式的性质解下列不等式并用数轴表示解集.
(1)x-7>26(2)-4x≥3
学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.
教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.
七、教法说明
解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.
(四)总结、扩展
本节重点:
(1)掌握不等式的三条基本性质,尤其是性质3.
(2)能正确应用性质对不等式进行变形.
(五)课外思考
对比不等式性质与等式性质的异同点.
八、布置作业
基本不等式说课稿15
我说课的内容是鲁教版义务教育课程标准实验教科书,七年级数学(下)第十一章第二节《不等式的基本性质》。下面,我从以下几个方面对本节课的教学设计进行说明。
一、教材分析
第十一章《一元一次不等式和一元一次不等式组》是在学习了数轴、等式性质、解一元一次方程、一次函数的基础上,从研究不等关系入手,展开对不等式的基本性质、不等式的解集、解一元一次不等式(组)、一元一次不等式与一次函数的研究学习。本课题为第十一章第二节《不等式的基本性质》。它在教材中起着承上启下的作用。关于它的学习以等式的基本性质为基础,它是学生以后顺利学习一元一次不等式和一元一次不等式组的解法的重要理论依据,是学生后继学习的重要基础和必备技能。
二、教学目标
知识目标:
1、经历不等式基本性质的探索过程,初步体会不等式与等式的异同。
2、掌握不等式的基本性质,运用不等式的基本性质将不等式变形。
能力目标:
1、培养学生类比、归纳、猜想、验证的数学研究方法。
2、发展学生的符号表达能力、代数变形能力。
3、培养学生自主探索与合作交流的能力。
情感目标:让学生感受生活中数学的存在,并且在自主探索、合作交流中感受学习的乐趣。
三、教学重点和难点
重点:掌握不等式的基本性质并能正确运用将不等式变形
难点:不等式基本性质3的运用
四、教法分析
活动是影响人发展的决定性因素,学生的学习只有通过自主活动并从中体验、感悟、建构自己的知识经验,培养积极的学习情感,才能得到自身的发展。但学生主动参与学习活动的方向,活动过程的积极化离不开教师的“导”。本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动。在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
五、学法分析
“教为不教,学为会学”,“授之以鱼”更要“授之以渔”。在教的过程中,关键是教学生的学法,本节课教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
六、教学过程分析
(一)本节教学将按以下五个流程展开:
回顾思考,引入课题
创设问题情景,探索规律
尝试练习,应用新知
总结反思,获得升华
布置作业,深化巩固
(二)教学过程
1、回顾思考,引入课题
观察下面两个推理,说出等式的基本性质
(1)∵a=b
∴a±3=b±3
a±(x2+2y)=b±(x2+2y)
(2)∵a=b
∴3a=3b
-a/4=-b/4
提出问题:那么不等式有没有类似的性质呢?引入课题。
[设计意图:“有效的教学一定要从学生已经知道了什么开始”。不等关系与相等关系有着辨证的关系。学生已经在六年级上册学习了等式的基本性质,因此,要类比等式的基本性质进行不等式基本性质的教学。课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的'进入数学课堂,为学习新知识做好准备。]
2、创设问题情景,探索规律
问题1:在天平两侧的托盘中放有不同质量的砝码。
右低左高说明右边的质量大于左边的质量。往两盘中加入相同质量的砝码,天平哪边高,哪边低?减去相同质量的砝码呢?(拿一个天平让学生亲手操作,获得直观感受)
[设计意图:数学源于生活,问题1的设计是为了从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质]
问题2:在不等式的两边加上或减去相同的数,不等号的方向改变吗?
如不等式7>4,-1
一般学生会得到:不等式的两边都加上(或减去)同一个数,不等号的方向不变。
这时可提出问题:把“数”的范围扩大到整式可以吗?
学生讨论可能得出结论:可以,因为整式的值就是实数。
让学生归纳总结:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。(教师板书:不等式的基本性质1)
引导学生说出符号语言:
如果a
如果a>b,那么a+c>b+c,a-c>b-c(教师板书)
[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想
方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,
让学生在合作交流中完成任务,体会合作学习的乐趣。]
问题3:若不等式两边同乘以或除以同一个数,不等号的方向改变吗?
如不等式2
(结合不等式基本性质1的探索方法,学生可能很快就探索出不等式的基本性质2、3)
让学生归纳总结:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
(教师板书:不等式的基本性质2,不等式的基本性质3)
引导学生说出符号语言:
如果a>b,c>0,那么ac>bc
如果a0,那么ac
如果a>b,c
如果abc (教师板书)
【基本不等式说课稿】相关文章:
基本不等式教学反思10-31
说课稿的基本步骤02-09
《不等式及其解集》说课稿12-23
基本不等式教学反思 12篇11-11
基本不等式教学反思12篇12-11
基本不等式教学反思11篇03-17
《比的基本性质》的说课稿05-24
《比的基本性质》说课稿11-07
《比的基本性质》说课稿05-21