勾股定理说课稿

时间:2022-01-31 19:11:30 说课稿 我要投稿

【推荐】勾股定理说课稿3篇

  作为一名人民教师,时常会需要准备好说课稿,借助说课稿可以更好地组织教学活动。说课稿要怎么写呢?下面是小编收集整理的勾股定理说课稿3篇,希望能够帮助到大家。

【推荐】勾股定理说课稿3篇

勾股定理说课稿 篇1

  各位考官,大家好,我是X号考生,今天我说课的内容是《勾股定理的逆定理》。根据新课程标准,我将以教什么,怎么教,为什么这么教为思路开展我的说课,首先,我先来说说我对教材的理解。

  教材分析是上好一堂课的前提条件,在上好一堂课之前,我首先谈一谈对教材的理解。

  一、说教材

  “勾股定理的逆定理”一节?是在上节“勾股定理”之后继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化。勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。

  二、说学情

  中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。学生此前学习了三角形有关的知识,掌握了直角三角形的性质和勾股定理,学生在此基础上学习勾股定理的逆定理可以加深理解。

  三、说教学目标

  根据数学课标的要求和教材的具体内容结合学生实际我确定了如下教学目标。

  【知识与技能】

  理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。利用勾股定理的逆定理判定一个三角形是不是直角三角形。

  【过程与方法】

  通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

  【情感态度与价值观】

  通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

  四、说教学重难点

  重点:勾股定理逆定理的应用;

  难点:探究勾股定理逆定理的证明过程。

  五、说教学方法

  科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。基于此,我准备采用的教法是讲练结合法,小组讨论法。

  六、说教学过程

  (一)导入新课

  在导入新课环节,我会采用温故知新的导入方法,先让学生回顾勾股定理有关知识,并引入本节课的课题——勾股定理逆定理。

  【设计意图】通过复习回顾能很好地将新旧知识联系起来,使学生形成对知识的系统的认识。并且由旧知开始,能很好地帮助学生克服畏难情绪。

  (二)探究新知

  一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题去提示本节课的探究宗旨,演示古代埃及人把一根长绳打上等距离的13个结,然后便得到一个直角三角形这是为什么?这个问题一出现,马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视激发了学生的兴趣,因而全身心地投入到学习中来创造了我要学的气氛,同时也说明了几何知识来源于实践不失时机地让学生感到数学就在身边。

  因为几何来源于现实生活,对初二学生来说选择适当的时机让他们从个体实践经验中开始学习可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。

  这样设计是因为勾股定理逆定理的证明方法是学生第一次见,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

  接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等顺利作出了辅助直角三角形,整个证明过程自然无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程。这样学生不是被动接受勾股定理的逆定理?因而使学生感到自然、亲切。学生的'学习兴趣和学习积极性有所提高,使学生确实在学习过程中享受到自我创造的快乐。

  在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍充分发挥教科书的作用养成学生看书的习惯这也是在培养学生的自学能力。

  (三)巩固提高

  本着由浅入深的原则安排了三个题目。演示第一题比较简单(判断下列三条线段组成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)让学生口答让所有的学生都能完成。

  第二题则进了一层用字母代替了数字,绕了一个弯,既可以检查本课知识又可以提高灵活运用以往知识的能力。

  思维提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈调节教法同时注意加强有针对性的个别指导把发展学生的思维和随时把握学生的学习效果结合起来。

  (四)小结作业

  在小结环节,我会随机询问学生勾股定理的逆定理是什么?如果判断一个三角形是不是直角三角形,以及勾股定理的逆定理的应用需要注意点什么等问题,先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法培养能力方面比如辅助线的添法。

  设计意图:这样设计可以帮助学生以反思的形式回忆本节课所学的知识,加深对知识的印象,有利于学生良好的数学学习习惯的养成。

  由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。第一组是基础题,我会用ppt出示关于勾股定理的逆定理的计算题目,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。第二组是开放性题目,让学生课后思考总结一下判定一个三角形是直角三角形的方法。

勾股定理说课稿 篇2

 说教材

  本课时是北师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一。 勾股定理是我国古数学的一项伟大成就。勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用。 据此,制定教学目标如下:

  1。知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解。

  2。过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。 3。情感与态度目标:感受数学在生活中的应用,感受数学定理的美。 教学重点:勾股定理的应用。 教学难点:勾股定理的正确使用。 教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理。

  说教法和学法

  1。以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。 2。切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。 3。通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望。

  教学程序

  本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下: 一。回顾问:勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用。 二。新授课例1。如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14。2。1)

  ①学生取出自制圆柱,,尝试从A点到C点沿圆柱侧面画出几条路线。思考:那条路线最短? ②如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路线是什么?你画得对吗? ③蚂蚁从A点出发,想吃到C点处的`食物,它沿圆柱侧面爬行的最短路线是什么?

  思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”。 学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例2。(课本P58图14。2。3) 思路点拨:厂门的宽度是足够的,这个问题的关键是观察当卡车位于厂门正中间时其高度是否小于CH,点D在离厂门中线0。8米处,且CD⊥AB, 与地面交于H,寻找出Rt△OCD,运用勾股定理求出CD= = =0。6,CH=0。6+2。3=2。9>2。5可见卡车能顺利通过 。详细解题过程看课本 引导学生完成P58做一做。 三。课堂小练 1。课本P58练习第1,2题。 2。探究: 一门框的尺寸如图所示,一块长3米,宽2。2米的薄木板是否能从门框内通过?为什么?

  四。小结直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的具体应用,那样就能很轻松的解决现实生活中的许多问题,达到事倍功半的效果。

勾股定理说课稿 篇3

  一、说教材分析

  本节研究的是勾股定理的探索及其应用。它从边的角度进一步对直角三角形的特征进行了刻画。 它的主要内容是探索勾股定理,验证勾股定理的正确性,在此基础上,让学生利用勾股定理来解决一些实际问题。本节课是在学生认识直角三角形的基础上,在了解正方形和等腰直角三角形以后进行学习的,它是前面所学知识的延伸和拓展,又是后面学习勾股定理逆定理的基础,具有承上启下的作用。

  二、说教学目标

  教学目标的确定:教学目标是一堂课的中心任务,它只有在丰富多彩的数学活动中才能充分实现。一堂课的教学目标应全面、适度、明确、具体,便于检测。因此根据学生已有的认知基础和新课程标准,我确定了本节课教学目标为:

  1、知识技能:

  (1)了解勾股定理的文化背景,体验勾股定理的探索和验证过程。

  (2)运用勾股定理进行简单的计算和解释生活中的实际问题。

  (3)运用勾股定理会在数轴上画出表示无理数的点。

  2、数学思考:

  在勾股定理的探索、从实际问题抽象出直角三角形和在数轴上画出表示无理数的点的过程中,发展合情推理能力,初步体会、掌握转化和数形结合的思想方法。

  3、解决问题:

  通过拼图、探究活动,体验数学思维的严谨性,发展形象思维。学会与人合作并能与他人交流思维的过程和探究的结果。能够运用勾股定理解决直角三角形,在数轴上画出表示无理数的点等有关实际问题。

  4、情感态度:

  (1)通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值,感受数学文化,激发学习热情。

  (2)通过获得成功的经验和克服困难的经历,增进数学学习的信心。

  (3)通过研究一系列富有探究性的`问题,培养学生与他人交流、合作的意识和品质。

  三、说教学重、难点

  教学重、难点的确定:关注学生是否能与同伴进行有效的合作交流;关注学生是否积极的进行思考;关注学生能否探索出解决问题的方法。

  重点:通过探索、拼图验证勾股定理及勾股定理的应用过程,使学生获得一些研究问题与合作交流的方法经验。

  难点:利用数形结合的方法探索发现、验证勾股定理及其在实际生活中的应用。

  四、知识反映出来的技能、能力、方法、德育等因素

  本节知识通过 “ 探索发现---拼图实践—探索验证—分析结果—运用定理 ” 等活动过程,使学生进一步理解勾股定理,并从中学会思考,学会探索,学会运用,学会交流,体会知识反映出来的丰富的文化内涵,指导学生认识现实世界中蕴涵着的数学信息。

  五、教学方法

  数学知识、数学思想和方法必须由学生在现实的数学活动实践中理解和发展;教学中,以学生为本位,充分挖掘教材的空间,为学生搭建动手实践、自主探索、合作交流的平台;

  注重让学生经历数学知识的形成过程,充分调动学生的学习积极性,并通过这个过程,使学生体验学习成功的乐趣,在积极的思维中获取知识,发展能力。

  六、教学程序设计:

  为充分发挥学生的主体性和教师的主导辅助作用,设计了以下几个环节:

  (1)创设情境,引入新课

  问题

  某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?

  师生行为:教师出示照片及图片,并提出问题,学生观察图片发表见解。

  设计意图:从现实生活中提出勾股定理,为学生能够积极主动的投入到探索活动创设情景,激发学生学习热情。同时为探索勾股定理提供背景材料。达到引入新课的目的。

  (1)独立探究,合作交流。

  讲述数学家毕达哥拉斯的故事

  问题

  A、B、C的面积有什么关系?

  SA+SB=SC

  直角三角形三边有什么关系?

  两直边的平方和等于斜边的平方

  设计意图:问题是思维的起点,通过激发学生好奇、探究和主动学习的欲望。利用面积相等法,让学生发现以直角三角形两直角边为边长的正方形的面积,以斜边为边长的正方形的面积之间的关系。降低学生学习难度,从(3)自主实践,探索验证

  《课程标准》指出:“数学教学是数学活动的教学。”要求学生分学习小组,动手实践,积极思考,获得技能与解决问题的方法。关注学生动手实践,关注学生主动探索与合作,关注学生积极思考,给学生思维表达的时间、空间,让学生经历探索知识的过程,并在这个过程中得到发展.。

  两种拼图方案

  1、2、

  师生行为:教师演示动画和图片,同时提出问题,学生在独立思考的基础上以小组为单位,动手拼接,教师深入小组活动倾听学生的交流,帮助、指导学生完成拼图活动。学生展示分割、拼接的过程。

  设计意图:通过观察、拼图、探究活动,给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性,充分调动学生思维的积极性,发展形象思维,使学生对定理更加深刻,通过这一教学过程来达到突破难点的目的。

  (4)应用定理,解决问题

  数学源于实践,运用于实践;开放性处理教材,鼓励学生充分地发表意见,表现自我,让学生在教师营造的“创新土壤”中成为主人;给学生思维以广阔的空间,培养学生从多角度运用所学知识寻求解决问题的能力.

【勾股定理说课稿】相关文章:

勾股定理说课稿04-27

《勾股定理》的说课稿01-18

《勾股定理》说课稿01-06

探索勾股定理说课稿07-10

《勾股定理的逆定理》说课稿11-13

初中数学《勾股定理》说课稿11-25

初中数学勾股定理说课稿02-18

探索勾股定理说课稿7篇12-06

关于勾股定理说课稿七篇06-04