- 相关推荐
直线和圆的位置关系说课稿
作为一位杰出的老师,就不得不需要编写说课稿,借助说课稿可以让教学工作更科学化。那要怎么写好说课稿呢?以下是小编精心整理的直线和圆的位置关系说课稿,仅供参考,大家一起来看看吧。
一、教学内容分析
1、教材分析:
《圆》这一章,是学生平面几何学习中一个重要的内容,如何在圆的教学中,让学生在直线型图形研究的基础上进一步去体会研究几何图形的思维和方法,深刻领悟几何学的学科观点,有着非常重要的意义。下面是《圆》这一章的框架图:
2、学情分析:
通过前面8章的有关几何的学习,学生已经具备了一定的空间概念和几何直观,具有研究几何图形的思维和方法,有了上节课点和圆的位置关系的铺垫,学生对于探究直线和圆的位置关系并不会感到陌生。
二、教学目标的确定
根据教学内容的特点及学生的实际情况,确定了三个方面的目标:
1、了解直线和圆的三种位置关系,并能简单应用。
2、在探究过程中,提高学生观察、分析、抽象概括的能力,体会数学的基本思想和思维方式。
3、通过具体的探究活动,认识数学具有抽象、严谨的特点,体会数学的价值。
本节课的教学重点是探究直线和圆的位置关系,并能简单应用;
本节课的教学难点是能够从几何和代数两个角度分析直线和圆的位置关系。
三、教学方法的选择
根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法,教学中使用了几何画板来辅助教学。
四、教学过程的具体设计
为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:复习旧知,引入课题;探索归纳,得出结论;拓展运用,巩固新知;归纳小结,提高认知。具体过程如下:
(一)复习旧知,引入课题
提前准备好的学案上,只有一个O,如右图,
按照相应要求作图:
1、作点P
2、过点P作直线
对于问题1的预案:
设计意图:以学生自己动手画图的形式,复习了上节课的知识————点和圆的位置关系,为接下来探究直线和圆的位置关系奠定基础。
对于问题2的预案:
根据直线和圆的位置关系,将上述所有的情况分类:
提问1:分成几类:
提问2:分类的依据是什么
引导学生得出:根据直线和圆的公共点个数,可以把直线和圆的位置关系分为三类:相交、相切、相离,板书相关概念。
(二)探索归纳,得出结论:
刚才是从几何的角度(交点个数)探究直线和圆的三种位置关系,这阶段将从代数角度将直线和圆的位置关系数量化:
借助几何画板,让学生从运动变化的角度去理解直线和圆的三种位置关系:
圆具有轴对称性,直线也具有轴对称性,所以这个组合图形本身就具有轴对称性,其对称轴是过圆心垂直于该直线的,考虑到对称轴与直线的这种垂直关系在运动的过程中具有不变性,所以我们在考虑用数量来刻画直线和圆的位置关系时,要找的几何量一定是和这种垂直关系密不可分的,因此,圆心到直线的距离就会被考虑,然后先让学生猜想,再用几何画板演示加以严谨的证明验证猜想。
本章的研究主线就是圆的对称性,此环节的设计正符合这个研究逻辑,所以我认为此环节的设计是我的一个亮点。
(三)拓展运用,巩固新知:
1、已知圆的直径是13cm,设圆心到直线的距离是d
(1)若d=4。5cm,则直线与圆_______,有______个公共点
(2)若d=6。5cm,则直线与圆_______,有______个公共点
(3)若d=8cm,则直线与圆_________,有______个公共点。
2、已知圆的半径为r,直线上一点到圆心的距离为d,若d=r,则直线与圆的位置关系是()
A、相交B、相切C、相离D、相切或相交
3、在中,,AB=5cm,AC=3cm,以C为圆心的圆与AB相切,则这个圆的半径是多少?
本阶段的教学主要是通过对例题和练习的思考,使学生初步掌握直线和圆的位置关系,并能简单应用。
(三)归纳小结,提高认识:
知识层面上:
直线和圆的位置关系
相交
相切
相离
公共点的个数
2
1
圆心到直线的距离与半径的关系
d d =r d>r 公共点名称 交点 切点 无 直线名称 割线 切线 无 方法层面上: 经历了从不同角度分析问题和解决问题的过程,掌握解决问题的一些基本方法。 布置作业:学练优P59,60 【直线和圆的位置关系说课稿】相关文章: 《直线和圆的位置关系》教学反思05-12 圆的面积说课稿05-13 圆的认识说课稿08-15 小数点位置的移动说课稿05-11 圆的认识说课稿15篇05-14 《圆的面积》数学说课稿08-14 圆的面积说课稿15篇05-17 圆的周长说课稿(精选6篇)04-27 《太阳的位置和方向》教学反思05-10