- 相关推荐
《乘法交换律和结合律》说课稿
作为一位杰出的老师,编写说课稿是必不可少的,写说课稿能有效帮助我们总结和提升讲课技巧。那么你有了解过说课稿吗?下面是小编为大家整理的《乘法交换律和结合律》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
一、教材分析:
本教材是在学生已经掌握了乘法的意义和加法交换律、结合律有了初步认识的基础上进行教学的。本节课力求突出以学生发展为本的教育思想,所以整个教学过程要求以学生自主学习、自主探索为主,通过学生的观察、验证、归纳、运用等数学学习形式,让学生去感受数学问题的探索性和挑战性。学生在认知的过程中可能对于在使用乘法结合律的基础上又运用乘法交换律有冲突,老师在其中只是起到一个“穿针引线”的作用,让学生把前后内容联系起来,从而更好地服务于简便计算,达到灵活运用的目的与效果。
教学目标:
1、使学生理解和掌握乘法交换律和结合律,会运用乘法运算律进行简便计算。
2、通过乘法交换律和结合律公式的推导教学,培养学生思维能力,及科学的学习方法。
3、培养学生的分析、比较、综合能力以及初步的抽象概括能力
4、通过学生的自主学习,激发学生学习数学的兴趣。
5、结合教学中具体的教学事例对学生进行学习习惯、道德品质方面的教育。
教学重点:
引导学生概括出乘法交换律和结合律,并运用乘法运算律进行简算。
教学难点:
乘法交换律与结合律的推导过程是学习的难点。
教学准备:
多媒体课件。
二、教学过程的设计思路:
(一)谈话导入
1、出示图片
2、学生观察图片并交流:你能发现哪些数学信息呢?你能解决什么数学问题?根据学生的反馈板书:
(二)教学乘法交换律
引导学生列出算式:3×5,还可以5×3所以3×5=5×3请大家观察这个等式,它有什么特点。你能照着样子,再写出几个这样的等式吗?
4、反馈,请学生说说自己是怎样写的,教师板书。他写的对吗?还有吗?
5、请大家仔细观察一下这些等式,你们有什么发现?先把你的发现跟你的同桌说一说。
6、交流发现,充分让学生用自己的语言表达自己的想法,逐步归纳出乘法交换律:两个数相乘,交换乘数的位置,它们的积不变。这个规律就是乘法的交换律(板书)
7、字母表示如果用a、b分别表示两个乘数,你能用字母来表示乘法交换律吗?根据学生的回答板书:a×b=b×a
[设计意图:让学生自主探索,并通过观察比较,以及充分的交流,发现规律,再逐步抽象、概括出乘法交换律。]
(三)教学乘法结合律
1、出示例题2
2、要解决这个问题,你能用不同的方法来解答吗?
3、让学生自主解答
4、交流解答方法根据学生的回答,板书算式,并让学生说说每种方法的思考过程,还能怎样算?
5、这道题目有两种方法,那你能用“=”号把两个算式连接起来吗?(23×5)×6=23×(5×6)请大家比较等号两边的算式,有什么相同点和不同点?同桌讨论一下。
6、交流相同点和不同点,让学生说说,找出相同点:结果一样,数字一样。不同点:运算顺序不同。
7,那你能照着再写几组这样的等式吗?
8、让学生说说自己是怎样写的,根据学生的回答板书
9、请大家观察这些等式,你有什么发现吗?
10、交流发现,让学生说一说,归纳出乘法结合律:三个数相乘,先把前两个数相乘,再乘第3个数,或者先把后两个数相乘,再乘以第1个数,它们的积不变。
揭题:这就是乘法的结合律。(板书)如果用a、b、c分别表示三个乘数,那乘法结合律可以怎样表示呢?得到字母表达式:(a×b)×c=a×(b×c)让学生读一读,并再说说乘法结合律的意义。
[设计意图:让学生自主探索,并通过观察比较,以及充分的交流,发现规律,再逐步抽象、概括出乘法结合律。]
(四)初步应用,
教学试一试
1、前面,我们运用加法的交换律和结合律,可以进行简便计算。那乘法行不行呢?
2、出示题目,你能用简便方法计算下面两题吗?
3、交流方法:让学生说说是怎样计算的,有不同方法吗?(如果有,都板书出来,进行比较)为什么这样简便?
[设计意图:要使学生认识到:仅仅应用乘法结合律,还不能使计算简便,还得先应用乘法交换律交换乘数5与37(或37与2)的位置,再应用乘法结合律,才能使计算简便。进一步使学生体会计算简便的关键。]
(五)巩固提高、完成想想做做。
1、先填空,再说说应用了什么运算律?最后一个先用交换律,再用结合律,如果学生不清楚,分步写出来转换过程。
[设计意图:有利于培养学生用简便方法计算的意识和能力。可以让学生在思考计算的基础上组织交流。]
2、先算一算,再比较哪种方法简单?说说第2小题为什么简便,应用了什么运算律?
3、很快说出每组气球上三个数连乘的积让学生说说怎样算最快?让学生体会先算两个数相乘得整十数比较简便。
4、想想做做
5让学生说说从图上能得到哪些数学信息?你能用不同的方法来解答吗?让学生独立解答。交流方法,说说哪种计算简便?
(六)课堂小结
三、教学理念的设计:
体现学生的自主学习,合作交流,是新课程教学中倡导的基本理念。数学课程标准中提出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。当然独立思考是合作的前提,没有独立思考的合作交流是空的,在本教学中也有体现,例如在进行猜想验证的教学环节中,我要求每个学生自己先写一个式子,再四人小组进行交流,最后全班进行交流。在总结出乘法交换律和结合律的规律时,要求学生用自己的语言叙述概括,用自己的方法把这个规律记住。充分发挥学生的想象力,以就能获得学生创新的思维火花,同时体现“主动参与、积极思考、合作发现、体验成功、健康发展”的教学思路。在巩固练习阶段,充分给学生以自主权,学生以“创造”的空间,并通过比较,感受计算方法的灵活多样,培养学生灵活运用知识进行解题的能力。在练习的设计上,设计了有层次的练习题,使学有余力的学生在原有的基础上有所提高,体现了因材施教的思想,落实了“人人学有价值的数学”、“人人都能获得必要的数学”、“不同的人在数学上得到不同的发展”基本教学理念。
【《乘法交换律和结合律》说课稿】相关文章:
加法交换律和结合律说课稿01-09
乘法交换律和结合律四年级数学教学反思01-12
《乘法结合律》教学反思08-30
《乘法结合律》教学反思03-13
乘法结合律教学反思04-22
《加法交换律、加法结合律》教学反思03-04
《乘法结合律》教学反思(13篇)04-21
《乘法结合律》教学反思13篇04-20
《乘法结合律》教学反思(汇编13篇)04-21